Detection capability of residual control chart for stationary process data

1997 ◽  
Vol 24 (4) ◽  
pp. 475-492 ◽  
Author(s):  
Nien Fan Zhang
Production ◽  
2011 ◽  
Vol 21 (2) ◽  
pp. 217-222 ◽  
Author(s):  
Yang Su-Fen ◽  
Tsai Wen-Chi ◽  
Huang Tzee-Ming ◽  
Yang Chi-Chin ◽  
Cheng Smiley

In practice, sometimes the process data did not come from a known population distribution. So the commonly used Shewhart variables control charts are not suitable since their performance could not be properly evaluated. In this paper, we propose a new EWMA Control Chart based on a simple statistic to monitor the small mean shifts in the process with non-normal or unknown distributions. The sampling properties of the new monitoring statistic are explored and the average run lengths of the proposed chart are examined. Furthermore, an Arcsine EWMA Chart is proposed since the average run lengths of the Arcsine EWMA Chart are more reasonable than those of the new EWMA Chart. The Arcsine EWMA Chart is recommended if we are concerned with the proper values of the average run length.


2020 ◽  
Vol 1 (1) ◽  
pp. 9-16
Author(s):  
O. L. Aako ◽  
J. A. Adewara ◽  
K. S Adekeye ◽  
E. B. Nkemnole

The fundamental assumption of variable control charts is that the data are normally distributed and spread randomly about the mean. Process data are not always normally distributed, hence there is need to set up appropriate control charts that gives accurate control limits to monitor processes that are skewed. In this study Shewhart-type control charts for monitoring positively skewed data that are assumed to be from Marshall-Olkin Inverse Loglogistic Distribution (MOILLD) was developed. Average Run Length (ARL) and Control Limits Interval (CLI) were adopted to assess the stability and performance of the MOILLD control chart. The results obtained were compared with Classical Shewhart (CS) and Skewness Correction (SC) control charts using the ARL and CLI. It was discovered that the control charts based on MOILLD performed better and are more stable compare to CS and SC control charts. It is therefore recommended that for positively skewed data, a Marshall-Olkin Inverse Loglogistic Distribution based control chart will be more appropriate.


1995 ◽  
Vol 5 (1) ◽  
pp. 57-63
Author(s):  
Paul R. Fisher ◽  
Royal D. Heins

A methodology based on process-control approaches used in industrial production is introduced to control the height of poinsettia (Euphorbia pulcherrima L.). Graphical control charts of actual vs. target process data are intuitive and easy to use, rapidly identify trends, and provide a guideline to growers. Target reference values in the poinsettia height control chart accommodate the biological and industrial constraints of a stemelongation model and market specifications, respectively. A control algorithm (proportional-derivative control) provides a link between the control chart and a knowledge-based or expert computer system. A knowledge-based system can be used to encapsulate research information and production expertise and provide management recommendations to growers.


2018 ◽  
Vol 23 (4) ◽  
pp. 474-484
Author(s):  
Esmeralda Ramírez-Méndez ◽  
Mario Cantu-Sifuentes ◽  
David Salvador González-González ◽  
Argelia Fabiola Miranda-Pérez ◽  
Rolando Javier Praga-Alejo

Abstract Often, welding processes used in the industry affect the mechanical properties of materials and quality of a manufactured product. There is, however, an alternative process named Friction Stir Welding (FSW), which is an solid state welding process developed to weld light alloys without compromising their mechanical properties. It is of interest to monitor the performance of FSW process to detect loss of quality. In practice, superficial and internal defects can be found; they can be identified through simple visual inspection and through visual recognition on destructive testing respectively, both procedures represent inspection by attributes. Therefore a multi-attribute control chart is assessed to monitor the process. Commonly, multi-attribute control charts involve high sampling rates to ensure accurate monitoring. In this paper, a multi-attribute control chart is proposed, considering the use of empirical control limits, instead of the theoretical ones, in order to improve its accuracy and lessen the small sample sizes effect. The performance of proposed approaches is analyzed by means of Monte Carlo simulation. The results suggest that the performance of the empirical designs is better than the theoretical ones in all tested cases. Finally, the results of monitoring FSW process data are detailed.


Sign in / Sign up

Export Citation Format

Share Document