Grain size effect on strain-rate dependence of mechanical properties of polycrystalline copper

2019 ◽  
Vol 35 (11) ◽  
pp. 1401-1404
Author(s):  
Wang Dou ◽  
Ben Wang ◽  
Xiaoliang Geng ◽  
Jitang Fan
2017 ◽  
Author(s):  
N. Bonora ◽  
N. Bourne ◽  
A. Ruggiero ◽  
G. Iannitti ◽  
G. Testa

2021 ◽  
Vol 250 ◽  
pp. 03004
Author(s):  
Takahiro Kawano ◽  
Yuta Takase ◽  
Tomohisa Kojima ◽  
Hiroyuki Yamada ◽  
Kohei Tateyama ◽  
...  

Foamed plastics have been used in many engineering fields because of their superiority in low density, energy absorption, thermal insulation, and acoustic damping capacities. With foams, it is known that the microstructure of cells directly relates to macroscopic deformation behaviour. However, mechanical properties based on microstructures composed of non-uniform cells have not been fully understood. This study aims to clarify the mechanical properties grounded on microstructures of foamed plastics subjected to dynamic loading. The quasi-static and dynamic compression test was carried out using foamed plastic with anisotropy in the cell structure, then the strain rate dependence of deformation and energy absorption characteristics was investigated. It was confirmed that the local buckling of the cells was the dominant deformation mode in the plastic collapse of the test piece. It was also confirmed that cell buckling was initiated around the middle in the height after the plastic collapse, then propagated to the whole specimen in both the quasi-static and dynamic tests by using digital image correlation. The stress-strain relationships and the amount of absorbed energy showed strain rate dependence owing to the deformation mode in which the local buckling of the cells is dominant.


2013 ◽  
Vol 44 (8) ◽  
pp. 697-703 ◽  
Author(s):  
K.-D. Bouzakis ◽  
N. Michailidis ◽  
G. Skordaris ◽  
A. Tsouknidas ◽  
S. Makrimallakis ◽  
...  

1991 ◽  
Vol 01 (C3) ◽  
pp. C3-341-C3-346 ◽  
Author(s):  
K. HIGASHI ◽  
T. MUKAI ◽  
K. KAIZU ◽  
S. TSUCHIDA ◽  
S. TANIMURA

1985 ◽  
Vol 107 (3) ◽  
pp. 369-374 ◽  
Author(s):  
D. M. Cole

This work presents the results of uniaxial compression tests on freshwater polycrystalline ice. Grain size of the test material ranged from 1.5 to 5 mm, strain rate ranged from 10−6 to 10−2 s−1 and the temperature was −5°C. The grain size effect emerged clearly as the strain rate increased to 10−5 s−1 and persisted to the highest applied strain rates. On average, the stated increase in grain size brought about a decrease in peak stress of approximately 31 percent. The occurrence of the grain size effect coincided with the onset of visible cracking. The strength of the material increased to a maximum at a strain rate of 10−3 s−1, and then dropped somewhat as the strain rate increased further to 10−2 s−1. Strain at peak stress generally tended to decrease with both increasing grain size and increasing strain rate. The results are discussed in terms of the deformational mechanisms which lead to the observed behavior.


2015 ◽  
Vol 670 ◽  
pp. 144-151
Author(s):  
Irina Kurzina ◽  
Alisa Nikonenko ◽  
Natalja Popova ◽  
Elena L. Nikonenko ◽  
Mark Kalashnikov

The paper presents results of investigations of α-Ti microhardness modified by aluminum ions having diverse grain sizes, namely: 0.3 μm, 1.5 μm, and 17 μm. These investigations show that the decrease of the grain size and the additional ion implantation result in the significant modification of the structural and phase state of the alloy and its mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document