scholarly journals Combustion Properties of Birch (Betula pendula) Black Liquors From Sulfur-Free Pulping

2016 ◽  
Vol 36 (6) ◽  
pp. 401-411 ◽  
Author(s):  
Chengcong Chen ◽  
Raimo Alén ◽  
Joni Lehto ◽  
Hannu Pakkanen
TAPPI Journal ◽  
2015 ◽  
Vol 14 (4) ◽  
pp. 237-244 ◽  
Author(s):  
JONI LEHTO ◽  
RAIMO ALÉN

Untreated and hot water-treated birch (Betula pendula) sawdust were cooked by the oxygen-alkali method under the same cooking conditions (temperature = 170°C, liquor-to-wood ratio = 5 L/kg, and 19% sodium hydroxide charge on the ovendry sawdust). The pretreatment of feedstock clearly facilitated delignification. After a cooking time of 90 min, the kappa numbers were 47.6 for the untreated birch and 10.3 for the hot water-treated birch. Additionally, the amounts of hydroxy acids in black liquors based on the pretreated sawdust were higher (19.5-22.5g/L) than those in the untreated sawdust black liquors (14.8-15.5 g/L). In contrast, in the former case, the amounts of acetic acid were lower in the pretreated sawdust (13.3-14.8 g/L vs. 16.9-19.1 g/L) because the partial hydrolysis of the acetyl groups in xylan already took place during the hot water extraction of feedstock. The sulfur-free fractions in the pretreatment hydrolysates (mainly carbohydrates and acetic acid) and in black liquors (mainly lignin and aliphatic carboxylic acids) were considered as attractive novel byproducts of chemical pulping.


Holzforschung ◽  
1992 ◽  
Vol 46 (4) ◽  
pp. 337-342 ◽  
Author(s):  
Raimo Alén ◽  
Mikko Hupa ◽  
Taina Noopila

TAPPI Journal ◽  
2014 ◽  
Vol 13 (8) ◽  
pp. 81-90 ◽  
Author(s):  
NIKLAS VÄHÄ-SAVO ◽  
NIKOLAI DEMARTINI ◽  
RUFUS ZIESIG ◽  
PER TOMANI ◽  
HANS THELIANDER ◽  
...  

The growing interest in production of green chemicals and biofuels from biomass provides an incentive for pulp mills to identify new possibilities in recovering more wood components from the pulping process. One possibility is to use lignin, separated from black liquor. We undertook this work to determine the combustion properties of reduced-lignin black liquors—two kraft liquors and one soda liquor—in a laboratory-scale, singleparticle furnace. The combustion times, maximum swollen volume, nitric oxide formation, cyanate formation, and sulfur release were measured for the original liquors, the filtrates, and intermediate levels of lignin reduction. Combustion experiments were conducted at 900°C in 10% oxygen. Cyanate formation experiments were carried out by pyrolyzing the droplets at 800°C in 100% nitrogen to form a char. The chars were then gasified at 800°C in a 13% carbon dioxide/87% nitrogen atmosphere to obtain the smelt. Sulfur release was studied by pyrolyzing the samples at temperatures ranging from 300°C to 900°C. Liquors with the lowest lignin content had a smaller maximum swollen volume than the original sample. The devolatilization time was not affected by the lignin removal to any great extent, but lignin removal did have a clear effect on the char burning time. The amount of formed nitric oxide (g N/kg black liquor solids) remained constant or decreased slightly with increasing lignin removal in the kraft liquor samples, while for the soda samples the amount of nitric oxide formed increased. The amount of cyanate decreased clearly when comparing the samples with lowest lignin content to the original liquor samples. The peak sulfur release occurred at 500°C for both kraft liquors. In almost all experiments, the share of sulfur released was highest for the original samples and lowest for the sample with lowest lignin content. These results provide new data on combustion properties for reduced-lignin black liquors and indicate that for lignin removal levels up to about 20%, no significant changes are expected in the combustion behavior.


Holzforschung ◽  
2015 ◽  
Vol 69 (3) ◽  
pp. 257-264 ◽  
Author(s):  
Joni Lehto ◽  
Raimo Alén

Abstract The chemical composition of black liquors obtained from the soda-AQ pulping of birch (Betula pendula) sawdust was studied as a function of cooking time, effective alkali content, and hot-water pretreatment of the sawdust prior to delignification. Special attention was paid on the formation of lignin-derived materials and low-molecular-mass carbohydrate-derived degradation products containing aliphatic carboxylic acids. In the case of the hot-water-pretreated feedstock, less acetic acid and formic acid and more nonvolatile hydroxy acids (especially monocarboxylic acids) were obtained. The observations can be interpreted as a result of the extensive removal of hemicelluloses during the hot-water pretreatment.


TAPPI Journal ◽  
2015 ◽  
Vol 14 (7) ◽  
pp. 441-450
Author(s):  
HENRIK WALLMO, ◽  
ULF ANDERSSON ◽  
MATHIAS GOURDON ◽  
MARTIN WIMBY

Many of the pulp mill biorefinery concepts recently presented include removal of lignin from black liquor. In this work, the aim was to study how the change in liquor chemistry affected the evaporation of kraft black liquor when lignin was removed using the LignoBoost process. Lignin was removed from a softwood kraft black liquor and four different black liquors were studied: one reference black liquor (with no lignin extracted); two ligninlean black liquors with a lignin removal rate of 5.5% and 21%, respectively; and one liquor with maximum lignin removal of 60%. Evaporation tests were carried out at the research evaporator in Chalmers University of Technology. Studied parameters were liquor viscosity, boiling point rise, heat transfer coefficient, scaling propensity, changes in liquor chemical composition, and tube incrustation. It was found that the solubility limit for incrustation changed towards lower dry solids for the lignin-lean black liquors due to an increased salt content. The scaling obtained on the tubes was easily cleaned with thin liquor at 105°C. It was also shown that the liquor viscosity decreased exponentially with increased lignin outtake and hence, the heat transfer coefficient increased with increased lignin outtake. Long term tests, operated about 6 percentage dry solids units above the solubility limit for incrustation for all liquors, showed that the heat transfer coefficient increased from 650 W/m2K for the reference liquor to 1500 W/m2K for the liquor with highest lignin separation degree, 60%.


Sign in / Sign up

Export Citation Format

Share Document