An inverse reliability analysis method for reliability-based design optimization with random and dependent interval variables constrained within ellipsoids

2019 ◽  
Vol 51 (12) ◽  
pp. 2109-2126
Author(s):  
Shaojun Xie ◽  
Baisong Pan ◽  
Xiaoping Du
2009 ◽  
Vol 131 (5) ◽  
Author(s):  
Geng Zhang ◽  
Efstratios Nikolaidis ◽  
Zissimos P. Mourelatos

Probabilistic analysis and design of large-scale structures requires repeated finite-element analyses of large models, and each analysis is expensive. This paper presents a methodology for probabilistic analysis and reliability-based design optimization of large-scale structures that consists of two re-analysis methods, one for estimating the deterministic vibratory response and another for estimating the probability of the response exceeding a certain level. The deterministic re-analysis method can analyze efficiently large-scale finite-element models consisting of tens or hundreds of thousand degrees of freedom and design variables that vary in a wide range. The probabilistic re-analysis method calculates very efficiently the system reliability for different probability distributions of the random variables by performing a single Monte Carlo simulation of one design. The methodology is demonstrated on probabilistic vibration analysis and reliability-based design optimization of a realistic vehicle model. It is shown that the computational cost of the proposed re-analysis method for a single reliability analysis is about 1/20 of the cost of the same analysis using MSC/NASTRAN. Moreover, the probabilistic re-analysis approach enables a designer to perform reliability-based design optimization of the vehicle at a cost almost equal to that of a single reliability analysis. Without using the probabilistic re-analysis approach, it would be impractical to perform reliability-based design optimization of the vehicle.


2018 ◽  
Vol 10 (9) ◽  
pp. 168781401879333 ◽  
Author(s):  
Zhiliang Huang ◽  
Tongguang Yang ◽  
Fangyi Li

Conventional decoupling approaches usually employ first-order reliability method to deal with probabilistic constraints in a reliability-based design optimization problem. In first-order reliability method, constraint functions are transformed into a standard normal space. Extra non-linearity introduced by the non-normal-to-normal transformation may increase the error in reliability analysis and then result in the reliability-based design optimization analysis with insufficient accuracy. In this article, a decoupling approach is proposed to provide an alternative tool for the reliability-based design optimization problems. To improve accuracy, the reliability analysis is performed by first-order asymptotic integration method without any extra non-linearity transformation. To achieve high efficiency, an approximate technique of reliability analysis is given to avoid calculating time-consuming performance function. Two numerical examples and an application of practical laptop structural design are presented to validate the effectiveness of the proposed approach.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Barron J. Bichon ◽  
Michael S. Eldred ◽  
Sankaran Mahadevan ◽  
John M. McFarland

Determining the optimal (lightest, least expensive, etc.) design for an engineered component or system that meets or exceeds a specified level of reliability is a problem of obvious interest across a wide spectrum of engineering fields. Various formulations and methods for solving this reliability-based design optimization problem have been proposed, but they typically involve accepting a tradeoff between accuracy and efficiency in the reliability analysis. This paper investigates the use of the efficient global optimization and efficient global reliability analysis methods to construct surrogate models at both the design optimization and reliability analysis levels to create methods that are more efficient than existing methods without sacrificing accuracy. Several formulations are proposed and compared through a series of test problems.


Author(s):  
Yongsu Jung ◽  
Hyunkyoo Cho ◽  
Ikjin Lee

The conventional most probable point (MPP)-based dimension reduction method (DRM) and following researches show high accuracy in reliability analysis and thus have been successfully applied to reliability-based design optimization (RBDO). However, improvement in accuracy usually leads to reduction in efficiency. The MPP-based DRM is certainly better from the perspective of accuracy than first-order reliability methods (FORM). However, it requires additional function evaluations which could require heavy computational cost such as finite element analysis (FEA) to improve accuracy of probability of failure estimation. Therefore, in this paper, we propose MPP-based approximated DRM (ADRM) that performs one more approximation at MPP to maintain accuracy of DRM with efficiency of FORM. In the proposed method, performance functions will be approximated in original X-space with simplified bivariate DRM and linear regression using available function information such as gradients obtained during the previous MPP searches. Therefore, evaluation of quadrature points can be replaced by the proposed approximation. In this manner, we eliminate function evaluations at quadrature points for reliability analysis, so that the proposed method requires function evaluations for MPP search only, which is identical with FORM. In RBDO where sequential reliability analyses in different design points are necessary, ADRM becomes more powerful due to accumulated function information, which will lead to more accurate approximation. To further improve efficiency of the proposed method, several techniques, such as local window and adaptive initial point, are proposed as well. Numerical study verifies that the proposed method is as accurate as DRM and as efficient as FORM by utilizing available function information obtained during MPP searches.


Sign in / Sign up

Export Citation Format

Share Document