Interpreting complex trace element profiles in sediment cores from a multi-basin deep lake: the western branch of Lake Como

Author(s):  
Damiano Monticelli ◽  
Andrea Pozzi ◽  
Elena Ciceri ◽  
Barbara Giussani
PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10082
Author(s):  
Jamin G. Wieringa ◽  
Juliet Nagel ◽  
David M. Nelson ◽  
Bryan C. Carstens ◽  
H. Lisle Gibbs

The expansion of the wind energy industry has had benefits in terms of increased renewable energy production but has also led to increased mortality of migratory bats due to interactions with wind turbines. A key question that could guide bat-related management activities is identifying the geographic origin of bats killed at wind-energy facilities. Generating this information requires developing new methods for identifying the geographic sources of individual bats. Here we explore the viability of assigning geographic origin using trace element analyses of fur to infer the summer molting location of eastern red bats (Lasiurus borealis). Our approach is based on the idea that the concentration of trace elements in bat fur is related through the food chain to the amount of trace elements present in the soil, which varies across large geographic scales. Specifically, we used inductively coupled plasma–mass spectrometry to determine the concentration of fourteen trace elements in fur of 126 known-origin eastern red bats to generate a basemap for assignment throughout the range of this species in eastern North America. We then compared this map to publicly available soil trace element concentrations for the U.S. and Canada, used a probabilistic framework to generate likelihood-of-origin maps for each bat, and assessed how well trace element profiles predicted the origins of these individuals. Overall, our results suggest that trace elements allow successful assignment of individual bats 80% of the time while reducing probable locations in half. Our study supports the use of trace elements to identify the geographic origin of eastern red and perhaps other migratory bats, particularly when combined with data from other biomarkers such as genetic and stable isotope data.


Chemosphere ◽  
2019 ◽  
Vol 218 ◽  
pp. 869-878 ◽  
Author(s):  
Chun-mei Liang ◽  
Xiao-yan Wu ◽  
Kun Huang ◽  
Shuang-qin Yan ◽  
Zhi-juan Li ◽  
...  

1989 ◽  
Vol 78 ◽  
pp. 167-172 ◽  
Author(s):  
Madan Lal ◽  
R.K. Choudhury ◽  
B.K. Nayak ◽  
V.S. Bamane ◽  
P.N. Trivedi ◽  
...  

1983 ◽  
Vol 77 (1) ◽  
pp. 141-147 ◽  
Author(s):  
S. P. Moo ◽  
K. K. S. Pillay

2014 ◽  
Vol 51 ◽  
pp. 184-190 ◽  
Author(s):  
Kingsley O. Odigie ◽  
Andrew S. Cohen ◽  
Peter W. Swarzenski ◽  
A. Russell Flegal

PeerJ ◽  
2014 ◽  
Vol 2 ◽  
pp. e538 ◽  
Author(s):  
Rael Horwitz ◽  
Esther M. Borell ◽  
Maoz Fine ◽  
Yeala Shaked

2021 ◽  
Author(s):  
◽  
Aidan Stuart Robert Allan

<p>This thesis presents a chemical and isotopic investigation of well-dated silicic tephra layers sourced from the Taupo Volcanic Zone (TVZ), central North Island, New Zealand, that were recovered from deep ocean sediment cores at Ocean Drilling Program Site 1123 (41 degrees 47.16' S, 171 degrees 29.94' W; 3290 m water depth), located approximately 1000 km east of the TVZ. The relative quiescence of the deep ocean sedimentary setting, the continuous supply of biogenic and terrigenous sediment and the favourable location of Site 1123 close to the main TVZ ash dispersal path have resulted in an extensive TVZ tephra record (70 Quaternary tephra layers preserved in 3 sediment cores) at Site 1123. This record extends and compliments the onshore record of silicic TVZ volcanism which has been obscured by erosion of non-consolidated volcanic material and burial of older units by younger volcanic deposits. The Site 1123 cores comprise an important paleo-oceanographic record for the Southwest Pacific Ocean and as a result of previous paleo-environmental studies, the Site 1123 tephras have been assigned orbitally tuned stable isotope ages that are more precise than is currently possible by any radiometric dating techniques. These features of the Site 1123 tephra record highlight its potential to be established as a type section for Quaternary tephrochronological studies in the New Zealand region. In addition, the continuous stratigraphy and precise age control of these tephras enables the Site 1123 record to be used as a petrogenetic archive to investigate changes in chemical and isotopic composition of these tephras that may be related to changes in the petrogenesis of TVZ silicic magmas during the last ~ 1.65 Ma. This thesis establishes major and trace element chemical 'fingerprints' for the Site 1123 tephras using traditional (electron probe microanalysis) and novel (laser ablation inductively coupled plasma mass spectrometry) in situ geochemical techniques. Trace element fingerprints are demonstrated to provide a more precise means of correlating and distinguishing between tephras with essentially identical major element chemistries. These fingerprints are used to refine the original Site 1123 composite stratigraphy and age model and identify a section of repeated sediments in the Site 1123 cores that have introduced a significant error into the original composite stratigraphy and age model for the interval ~1.1 to 1.4 Ma. Correlation of the tephra layers between the 3 sediment cores (1123A, B and C) establishes that ~37-38 individual tephra units are recorded with ages ranging from 1.655 Ma to 27.1 ka. Approximately 50% of the eruptive units and cumulative tephra thickness at the site were recorded during the first ~ 150 ka of silicic TVZ volcanism (1.65 to 1.50 Ma). The fragmentary onshore record does not preserve clear evidence for this early period of hyperactivity. Four broad silicic melt types are identified on the basis of chemistry and eruptive age. Trace element indices of fractional crystallisation suggests the origin of the four melt types is primarily due to differential degrees of fractional crystallisation of accessory zircon, hydrous mineral phases and Fe-Ti oxides. Sr-Nd-Pb isotopic compositions of 13 representative Site 1123 tephras cannot be generated using traditional models in which Torlesse meta-sedimentary rocks are the sole contaminant of mafic magmas. Instead the data support a model in which ascending TVZ basalts assimilate crustal rocks of both meta-greywacke terranes: firstly up to 15% of Waipapa crust is assimilated at depth, followed by assimilation of between 20 and 45% Torlesse crust at shallower levels. In this model the majority of Site 1123 tephras indicate a remarkably uniform amount of crust (~ 35%) with the most evolved sample requiring 45% crustal contribution. However, extensive fractional crystallisation (55-85%) is required to have accompanied crustal assimilation in order to drive the relatively low SiO2 compositions of these contaminated mafic magmas (SiO2 = 53-58 wt% after crustal contamination) to the high SiO2 rhyolite (74-78 wt%) compositions of the Site 1123 tephras. The large crustal contributions to TVZ silicic magmas (35-45%) implied by these data are high compared to large volume silicic magmas from different settings (e.g. Yemen-Ethiopia; Long Valley, USA), a feature that likely reflects the thin crust and high thermal flux into the continental crust beneath the TVZ.</p>


Author(s):  
Gerhard Schmiedl

The understanding of past changes in climate and ocean circulation is to a large extent based on information from marine sediments. Marine deposits contain a variety of microfossils, which archive (paleo)-environmental information, both in their floral and faunal assemblages and in their stable isotope and trace element compositions. Sampling campaigns in the late 19th and early 20th centuries were dedicated to the inventory of sediment types and microfossil taxa. With the initiation of various national and international drilling programs in the second half of the 20th century, sediment cores were systematically recovered from all ocean basins and since then have shaped our knowledge of the oceans and climate history. The stable oxygen isotope composition of foraminiferal tests from the sediment cores delivered a continuous record of late Cretaceous–Cenozoic glaciation history. This record impressively proved the effects of periodic changes in the orbital configuration of the Earth on climate on timescales of tens to hundreds of thousands of years, described as Milankovitch cycles. Based on the origination and extinction patterns of marine microfossil groups, biostratigraphic schemes have been established, which are readily used for the dating of sediment successions. The species composition of assemblages of planktic microfossils, such as planktic foraminifera, radiolarians, dinoflagellates, coccolithophorids, and diatoms, is mainly related to sea-surface temperature and salinity but also to the distribution of nutrients and sea ice. Benthic microfossil groups, in particular benthic foraminifera but also ostracods, respond to changes in water depth, oxygen, and food availability at the sea floor, and provide information on sea-level changes and benthic-pelagic coupling in the ocean. The establishment and application of transfer functions delivers quantitative environmental data, which can be used in the validation of results from ocean and climate modeling experiments. Progress in analytical facilities and procedures allows for the development of new proxies based on the stable isotope and trace element composition of calcareous, siliceous, and organic microfossils. The combination of faunal and geochemical data delivers information on both environmental and biotic changes from the same sample set. Knowledge of the response of marine microorganisms to past climate changes at various amplitudes and pacing serves as a basis for the assessment of future resilience of marine ecosystems to the anticipated impacts of global warming.


Sign in / Sign up

Export Citation Format

Share Document