Using flow field-flow fractionation (Fl-FFF) for observation of salinity effect on the size distribution of humic acid aggregates

Author(s):  
Rabiab Suwanpetch ◽  
Juwadee Shiowatana ◽  
Atitaya Siripinyanond
2006 ◽  
Vol 3 (3) ◽  
pp. 192 ◽  
Author(s):  
Enrica Alasonati ◽  
Björn Stolpe ◽  
Maria-Anna Benincasa ◽  
Martin Hassellöv ◽  
Vera I. Slaveykova

Environmental Context. Acidic polysaccharides are important components of the organic matter in ecosystems that are involved in the transport of metal pollutants. They are able to affect trace element cycling, both due to their metal binding properties and to their effect on aggregation and sedimentation of organic matter. In order to obtain more information regarding their role as metal pollutant carriers, the size distributions of alginate and metal alginate complexes have therefore been studied with novel instrumentation. Abstract. The present study explores the potential use of asymmetrical flow field flow fractionation (aFlFFF) with a multidetection system for the study of metal–alginate interactions. aFlFFF, coupled on-line to a differential refractive index and seven angle laser light scattering detectors was used to provide information on the alginate size distributions. In parallel, the metal distributions of metal–alginate complexes were probed by aFlFFF–high resolution inductively coupled plasma-mass spectrometry. Average values and continuous distributions of molar masses, radiuses of gyration and hydrodynamic radiuses, which are critical for understanding the role of alginates as carriers of metal pollutants, were evaluated in presence of Pb or Cd and compared with those in metal-free solutions of alginate. The values of number average and weight average molar mass, weight average radius of gyration and shape factor for alginate were 150 and 188 kg mol–1, 53 nm and 1.7, respectively. Alginate molar mass and radius of gyration distributions were slightly shifted to higher values by the addition of micromolar concentrations of Pb or Cd. The alginate size distribution in the presence of Cd was similar to the alginate-alone control, whereas in the presence of Pb the size distribution was broader with a shift of the maximum toward higher molar masses.


2020 ◽  
Vol 60 (5) ◽  
pp. 979-987
Author(s):  
Daisuke Itabashi ◽  
Reiko Murao ◽  
Shunsuke Taniguchi ◽  
Kazumi Mizukami ◽  
Hideaki Takagi ◽  
...  

Cellulose ◽  
2021 ◽  
Vol 28 (16) ◽  
pp. 10221-10238
Author(s):  
Christoph Metzger ◽  
Roland Drexel ◽  
Florian Meier ◽  
Heiko Briesen

AbstractCellulose nanocrystals (CNCs) are bio-based building blocks for sustainable advanced materials with prospective applications in polymer composites, emulsions, electronics, sensors, and biomedical devices. However, their high surface area-to-volume ratio promotes agglomeration, which restrains their performance in size-driven applications, thereby hindering commercial CNC utilization. In this regard, ultrasonication is commonly applied to disperse CNCs in colloidal suspensions; however, ultrasonication methodology is not yet standardized and knowledge of the effects of ultrasound treatments on CNC size distribution is scarce. The major goals of this study were attributed to targeted breakage of CNC agglomerates and clusters by ultrasound. The evolution of particle size distribution and potential de-sulfation by ultrasonication as well as the long-term stability of ultrasonicated CNC suspensions were investigated. Colloidal suspensions of sulfated CNCs were isolated from cotton α-cellulose. Effects of ultrasonication on particle size distribution were determined by asymmetrical flow field-flow fractionation (AF4) coupled with on-line multi-angle light scattering and ultraviolet spectroscopy. These results were complemented with off-line dynamic light scattering. High ultrasound energy densities facilitated cumulative dispersion of CNC clusters. Consequently, the mean rod length decreased logarithmically from 178.1 nm at an ultrasound energy input of 2 kJ g−1 CNC to 141.7 nm (− 20%) at 40 kJ g−1 CNC. Likewise, the hydrodynamic diameter of the particle collective decreased logarithmically from 94.5 to 73.5 nm (− 22%) in the same processing window. While the rod length, below which 95 wt% of the CNCs were found, decreased from 306.5 to 231.8 nm (− 24%) from 2 to 40 kJ g−1 CNC, the shape factor of the main particle fraction ranged from 1.0 to 1.1, which indicated a decreasing number of dimers and clusters in the particle collective. In summary, progressing ultrasonication caused a shift of the particle length distribution to shorter particle lengths and simultaneously induced narrowing of the distribution. The suspension’s electrical conductivity concurrently increased, which has been attributed to faster diffusion of smaller particles and exposure of previously obscured surface charges. Colloidal stability, investigated through electrical AF4 and electrophoretic light scattering, was not affected by ultrasonication and, therefore, indicates no de-sulfation by the applied ultrasound treatment. Occurrence of minor CNC agglomeration at low ultrasound energy densities over the course of 6 months suggest the effect was not unmitigatedly permanent.


Sign in / Sign up

Export Citation Format

Share Document