Instabilities of magnetic flux tubes in a stellar convection zone I. Equatorial flux rings in differentially rotating stars

1993 ◽  
Vol 72 (1-4) ◽  
pp. 209-247 ◽  
Author(s):  
A. Ferriz-Mas ◽  
M. Schüssler
2004 ◽  
Vol 219 ◽  
pp. 546-551
Author(s):  
T. Granzer ◽  
K. G. Strassmeier

We model thin magnetic flux tubes as they rise from the bottom of a stellar convection zone to the photosphere. On emergence they form active regions, i.e. star spots. This model was very successfully applied to the solar case, where the simulations where in agreement with the butterfly diagram, Joy's law, and Hale's law. We propose the use of a similar model to describe stellar activity in the more extreme form found on active stars. A comparison between Doppler-images of well-observed pre-MS stars and a theoretically derived probability of star-spot formation as a function of latitude is presented.


1996 ◽  
Vol 176 ◽  
pp. 269-288
Author(s):  
M. Schüssler

A theoretical study of storage, instability and rise of magnetic flux tubes in the outer convection zone of a cool star is presented. Special emphasis is laid on their emergence latitudes at the surface of magnetically active stars. We apply the ‘solar paradigm’ and assume toroidal magnetic flux tubes to be stored in force equilibrium within the overshoot layer underneath the convection zone. A non-axisymmetric (undulatory) instability leads to the formation of flux loops, which rise through the convection zone and emerge at the surface to form bipolar magnetic regions and starspots. Our approach combines the analytical determination of the linear stability properties of flux tubes with numerical simulations of the nonlinear evolution of the instability and the rise of magnetic flux tubes through the convection zone. It is found that for sufficiently rapidly rotating stars the magnetic flux emerges at high latitudes since the Coriolis force leads to a poleward deflection of rising flux loops. The latitude distribution of the emerging flux is determined for a number of stellar models along the evolutionary sequence of a star with one solar mass, from the pre-main sequence evolution up to the giant phase. Rapid rotation and deep convection zones favour flux emergence in high latitudes. Starspots right at the stellar (rotational) poles form either directly by flux eruption from small stellar cores (as for T Tauri stars or giants) or by a poleward slip of the sub-surface part of the flux tube after flux emergence in mid latitudes. The latter process explains the simultaneous existence of polar spots and spots at intermediate latitudes as observed on some stars.


1998 ◽  
Vol 505 (1) ◽  
pp. L59-L63 ◽  
Author(s):  
Y. Fan ◽  
E. G. Zweibel ◽  
M. G. Linton ◽  
G. H. Fisher

1993 ◽  
Vol 157 ◽  
pp. 27-39
Author(s):  
M. Schüssler

The structure of solar surface magnetic fields, the way they erupt from the the convection zone below, and processes like flux expulsion and fragmentation instabilities support the view that magnetic flux in a stellar convection zone is in an intermittent, fragmented state which can be described as an ensemble of magnetic flux tubes. Depending on size and field strength, the dynamics of magnetic flux tubes can strongly differ from the behavior of a passive, diffuse field which is often assumed in conventional mean-field dynamo theory. Observed properties of active regions like emergence in low latitudes, Hale's polarity rules, tilt angles, and the process of sunspot formation from smaller fragments, together with theoretical considerations of the dynamics of buoyant flux tubes indicate that the magnetic structures which erupt in an emerging active region are not passive to convection and originate in a source region (presumably an overshoot layer below the convection zone proper) with a field strength of at least 105 G, far beyond the equipartition field strength with respect to convective flows. We discuss the consequences of such a situation for dynamo theory of the solar cycle and consider the possibility of dynamo models on the basis of flux tubes. A simple, illustrative example of a flux tube dynamo is presented.


2004 ◽  
Vol 219 ◽  
pp. 437-448
Author(s):  
Zdzislaw E. Musielak

To explain the heating of stellar chromospheres and transition regions, two classes of heating mechanisms have been considered: dissipation of acoustic and magnetic waves generated in stellar convection zones; and dissipation of currents generated by photospheric motions of surface magnetic fields. The focus of this paper is on the wave heating mechanisms and on recent results which demonstrate that theoretical models of stellar chromospheres based on the wave heating can explain the “basal flux” and the observed Ca II emission in most stars but cannot account for the observed Mg II emission in active stars. The obtained results clearly show that the base of stellar chromospheres is heated by acoustic waves, the heating of the middle and upper chromospheric layers is dominated by magnetic waves associated with magnetic flux tubes, and that other non-wave heating mechanisms are required to explain the structure of the highest layers of stellar chromospheres and transition regions.


Sign in / Sign up

Export Citation Format

Share Document