Age as a factor in induction of systemic acquired resistance in tomato against bacterial speck by aqueous fruit extracts ofAzadirachta indica

2013 ◽  
Vol 46 (14) ◽  
pp. 1696-1706 ◽  
Author(s):  
Navodit Goel ◽  
A.N. Sahi ◽  
P.K. Paul
Plant Disease ◽  
2001 ◽  
Vol 85 (5) ◽  
pp. 481-488 ◽  
Author(s):  
F. J. Louws ◽  
M. Wilson ◽  
H. L. Campbell ◽  
D. A. Cuppels ◽  
J. B. Jones ◽  
...  

Acibenzolar-S-methyl (CGA 245704 or Actigard 50WG) is a plant activator that induces systemic acquired resistance (SAR) in many different crops to a number of pathogens. Acibenzolar-S-methyl was evaluated for management of bacterial spot (Xanthomonas axonopodis pv. vesicatoria) and bacterial speck (Pseudomonas syringae pv. tomato) of tomato in 15 and 7 field experiments, respectively. Experiments were conducted over a 4-year period in Florida, Alabama, North Carolina, Ohio, and Ontario using local production systems. Applied at 35 g a.i. ha-1, acibenzolar-S-methyl reduced foliar disease severity in 14 of the 15 bacterial spot and all 7 bacterial speck experiments. Disease control was similar or superior to that obtained using a standard copper bactericide program. Acibenzolar-S-methyl also reduced bacterial fruit spot and speck incidence. Tomato yield was not affected by using the plant activator in the field when complemented with fungicides to manage foliar fungal diseases, but tomato transplant dry weight was negatively impacted. X. axonopodis pv. vesicatoria population densities on greenhouse-grown tomato transplants were reduced by acibenzolar-S-methyl treatment. Bacterial speck and spot population densities on leaves of field-grown plants were not dramatically affected. Acibenzolar-S-methyl can be integrated as a viable alternative to copper-based bactericides for field management of bacterial spot and speck, particularly where copper-resistant populations predominate.


2002 ◽  
Vol 3 (1) ◽  
pp. 11 ◽  
Author(s):  
A. S. Graves ◽  
S. A. Alexander

On the Eastern Shore of Virginia, copper compounds, which have been used for controlling bacterial disease on tomato, have been associated with pesticide run-off from commercial tomato production with copper toxicity causing losses in clam nurseries. The objective of this study was to identify and evaluate a replacement for copper that was safer for the environment and could provide effective management of bacterial diseases of tomato. Acibenzolar-S-methyl (Actigard 50 WG), a plant activator that induces systemic acquired resistance (SAR), was compared to the standard bactericide (copper hydroxide + mancozeb) for controlling Xanthomonas axonopodis pv. vesicatoria and Pseudomonas syringae pv. tomato. Plots were established in grower fields in a randomized complete block design with four replications. Acibenzolar-S-methyl, at a rate of 10.5-g a.i./ha was equal to or better than the standard copper-based bactericide for controlling bacterial speck and spot, with no adverse affect on yield. Replacing copper with acibenzolar-S-methyl would effectively eliminate the need for copper bactericides. In environmentally sensitive areas where copper toxicity can be a problem, acibenzolar-S-methyl can providean effective alternative for the management of bacterial speck and bacterial spot on tomato. Accepted for publication 26 January 2002. Published 20 February 2002.


1998 ◽  
Vol 88 (5) ◽  
pp. 450-455 ◽  
Author(s):  
W. Zhang ◽  
D. Y. Han ◽  
W. A. Dick ◽  
K. R. Davis ◽  
H. A. J. Hoitink

A biocontrol agent-fortified compost mix, suppressive to several diseases caused by soilborne plant pathogens, induced systemic acquired resistance (SAR) in cucumber against anthracnose caused by Colletotrichum orbiculare and in Arabidopsis against bacterial speck caused by Pseudomonas syringae pv. maculicola KD4326. A peat mix conducive to soilborne diseases did not induce SAR. The population size of P. syringae pv. maculicola KD4326 was significantly lower in leaves of Arabidopsis plants grown in the compost mix compared to those grown in the peat mix. Autoclaving destroyed the SAR-inducing effect of the compost mix, and inoculation of the autoclaved mix with nonautoclaved compost mix or Pantoea agglomerans 278A restored the effect, suggesting the SAR-inducing activity of the compost mix was biological in nature. Topical sprays with water extract prepared from the compost mix reduced symptoms of bacterial speck and the population size of pathogenic KD4326 in Arabidopsis grown in the peat mix but not in the compost mix. The peat mix water extract applied as a spray did not control bacterial speck on plants grown in either mix. Topical sprays with salicylic acid (SA) reduced the severity of bacterial speck on plants in the peat mix but did not further reduce the severity of symptoms on plants in the compost mix. The activity of the compost water extract was heat-stable and passed through a 0.2-μm membrane filter. β-1,3-Glucanase activity was low in cucumber plants grown in either mix, but when infected with C. orbiculare, this activity was induced to significantly higher levels in plants grown in the compost mix than in plants grown in the peat mix. Similar results were obtained for β-D-glucuronidase (GUS) activity driven by a PR2 (β-1,3-glucanase) gene promoter in transgenic Arabidopsis plants grown in the compost or peat mix. GUS activity was induced with topical sprays of the compost water extract or SA in plants not inoculated with the pathogen, suggesting that compost-induced disease suppression more than likely involved the potentiation of resistance responses rather than their activation and that compost-induced SAR differed from SAR induced by pathogens, SA, or compost water extract.


2001 ◽  
Vol 25 (2) ◽  
pp. 149-157 ◽  
Author(s):  
Keiko Yoshioka ◽  
Hideo Nakashita ◽  
Daniel F. Klessig ◽  
Isamu Yamaguchi

Sign in / Sign up

Export Citation Format

Share Document