copper toxicity
Recently Published Documents


TOTAL DOCUMENTS

792
(FIVE YEARS 135)

H-INDEX

62
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Nava Reznik ◽  
Annastassia D. Gallo ◽  
Katherine W. Rush ◽  
Gabriel Javitt ◽  
Yael Fridmann-Sirkis ◽  
...  

Mucus protects the body by many mechanisms, but a role in managing toxic transition metals was not previously known. Here we report that secreted mucins, the major mucus glycoproteins coating the respiratory and intestinal epithelia, are specific copper-binding proteins. Most remarkably, the intestinal mucin, MUC2, has two juxtaposed copper binding sites, one that accommodates Cu2+ and the other Cu1+, which can be formed in situ by reduction with vitamin C. Copper is an essential trace metal because it is a cofactor for a variety of enzymes catalyzing electron transfer reactions, but copper damages macromolecules when unregulated. We observed that MUC2 protects against copper toxicity while permitting nutritional uptake into cells. These findings introduce mucins, produced in massive quantities to guard extensive mucosal surfaces, as extracellular copper chaperones and potentially important players in physiological copper homeostasis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Megan R. Hall ◽  
Andrew Y. Gracey

One of the challenges facing efforts to generate molecular biomarkers for toxins is distinguishing between markers that are indicative of exposure and markers that provide evidence of the effects of toxicity. Phenotypic anchoring provides an approach to help segregate markers into these categories based on some phenotypic index of toxicity. Here we leveraged the mussel embryo-larval toxicity assay in which toxicity is estimated by the fraction of larvae that exhibit an abnormal morphology, to isolate subsets of larvae that were abnormal and thus showed evidence of copper-toxicity, versus others that while exposed to copper exhibited normal morphology. Mussel larvae reared under control conditions or in the presence of increasing levels of copper (3–15 μg/L Cu2+) were physically sorted according to whether their morphology was normal or abnormal, and then profiled using RNAseq. Supervised differential expression analysis identified sets of genes whose differential expression was specific to the pools of abnormal larvae versus normal larvae, providing putative markers of copper toxicity versus exposure. Markers of copper exposure and copper-induced abnormality were involved in many of the same pathways, including development, shell formation, cell adhesion, and oxidative stress, yet unique markers were detected in each gene set. Markers of effect appeared to be more resolving between phenotypes at the lower copper concentration, while markers of exposure were informative at both copper concentrations.


2021 ◽  
Vol 5 (3) ◽  
pp. e202101164
Author(s):  
Sabine Borchard ◽  
Stefanie Raschke ◽  
Krzysztof M Zak ◽  
Carola Eberhagen ◽  
Claudia Einer ◽  
...  

In Wilson disease, excessive copper accumulates in patients’ livers and may, upon serum leakage, severely affect the brain according to current viewpoints. Present remedies aim at avoiding copper toxicity by chelation, for example, by D-penicillamine (DPA) or bis-choline tetrathiomolybdate (ALXN1840), the latter with a very high copper affinity. Hence, ALXN1840 may potentially avoid neurological deterioration that frequently occurs upon DPA treatment. As the etiology of such worsening is unclear, we reasoned that copper loosely bound to albumin, that is, mimicking a potential liver copper leakage into blood, may damage cells that constitute the blood-brain barrier, which was found to be the case in an in vitro model using primary porcine brain capillary endothelial cells. Such blood–brain barrier damage was avoided by ALXN1840, plausibly due to firm protein embedding of the chelator bound copper, but not by DPA. Mitochondrial protection was observed, a prerequisite for blood–brain barrier integrity. Thus, high-affinity copper chelators may minimize such deterioration in the treatment of neurologic Wilson disease.


2021 ◽  
Vol 226 ◽  
pp. 112825
Author(s):  
Jian Zeng ◽  
Jingru Tang ◽  
Fanglin Zhang ◽  
Yi Wang ◽  
Houyang Kang ◽  
...  

Chemosphere ◽  
2021 ◽  
pp. 133110
Author(s):  
Gissela Pascual ◽  
Daisuke Sano ◽  
Takashi Sakamaki ◽  
Michihiro Akiba ◽  
Osamu Nishimura

2021 ◽  
pp. 106015
Author(s):  
T.T. Yen Le ◽  
Daniel Grabner ◽  
Milen Nachev ◽  
Míriam R. García ◽  
Eva Balsa-Canto ◽  
...  

Author(s):  
Marouane Ben Massoud ◽  
Oussama Kharbech ◽  
Lamia Sakouhi ◽  
Sihem Ben Hassine ◽  
Yao Zhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document