A Novel Human β-Globin Gene Variant [Hb London-Ontario,HBB: c.332T>G] is Associated with Transfusion-Dependent Anemia in a Patient with a Hemoglobin Electrophoresis Pattern Consistent with β-Thalassemia Trait

Hemoglobin ◽  
2019 ◽  
Vol 43 (2) ◽  
pp. 129-131
Author(s):  
Marc N. Bienz ◽  
Cyrus Hsia ◽  
John S. Waye ◽  
Margo Bode ◽  
Ziad Solh
Blood ◽  
1987 ◽  
Vol 70 (2) ◽  
pp. 583-586 ◽  
Author(s):  
JC Diaz-Chico ◽  
KG Yang ◽  
A Kutlar ◽  
AL Reese ◽  
M Aksoy ◽  
...  

Abstract Detailed gene mapping analyses of genomic DNA from two Turkish subjects with a beta-thalassemia trait demonstrated an approximately 300 bp deletion, which is located between the Rsa I restriction site 128 bp 5′ to the Cap site and the Acc I restriction site 284 bp 3′ to the same Cap site; it includes the 5′ beta promoter region, the first exon, and (part of) the IVS-I. Heterozygotes for this and two other beta- thalassemia types, which are also caused by deletions involving 5′ beta promoter sequences, appear to have higher hemoglobin (Hb) A2 levels, perhaps because the loss of this promoter results in an increased transcription of the delta globin gene, as delta and beta promoters may be influenced by the same enhancing sequences 3′ to the beta globin gene.


Blood ◽  
1984 ◽  
Vol 64 (4) ◽  
pp. 941-944 ◽  
Author(s):  
BJ Padanilam ◽  
AE Felice ◽  
TH Huisman

Abstract Restriction endonuclease mapping defined a partial deletion of about 1.35 kb in the beta-globin gene of a black American patient with hemoglobin S-beta zero-thalassemia and in his uncle with a beta zero- thalassemia trait. The 5′ endpoint of the deletion is about 600 bases upstream from the cap site, and the 3′ endpoint lies within about 500 bases from the 5 splice junction of the second intervening sequence. The deletion is different from that of a previously reported Indian beta zero-thalassemia allele, where 0.6 kb is deleted at the 3′ end of the beta-globin gene.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 6-7
Author(s):  
Christopher C Denton ◽  
Payal Shah ◽  
Silvie Suriany ◽  
Honglei Liu ◽  
Wanwara Thuptimdang ◽  
...  

Introduction Absence of alpha globin genes has long been known to influence the physiology of sickle cell disease (SCD). Individuals with SCD who are missing one or two alpha globin genes have decreased rates of cerebral vasculopathy, stroke, acute chest syndrome, and leg ulcers (Bernaudin, Blood 2008; Flanagan, Blood 2011; Nolan, Br J Haematol 2006). Although there is laboratory evidence of decreased hemolytic rate in these patients (Higgs, N Engl J Med 1982), the mechanism for their improved clinical outcomes has not been identified. Recently, the alpha globin protein has been shown to be present in the endothelial wall of human arterioles, where it modulates nitric oxide (NO) scavenging during vasoconstriction (Straub, Nature 2012). In mice, pharmacological inhibition of alpha globin leads to increased endothelial NO activity, independently of NO production, and results in increased blood perfusion, reduced systemic hypertension, and increased pulmonary artery vasodilation (Keller, Hypertension 2016; Alvarez, Am J Respir Cell Mol Biol 2017). The relationship between absence of alpha globin and arterial vasodilation, and the role of alpha globin in NO-mediated vascular signaling are potential mechanisms that could explain the beneficial effect of missing alpha globin genes in SCD. Using alpha thalassemia as a naturally occurring human model of alpha globin gene knockout, we hypothesized that loss of alpha globin genes leads to improvement in microvascular blood flow in thalassemia trait subjects without hemolysis. Methods Alpha thalassemia trait subjects missing one or two alpha globin genes, and healthy controls were recruited to the study, which was approved by the Children's Hospital Los Angeles Institutional Review Board. Blood samples were obtained from all subjects to test for hemoglobin, mean corpuscular volume (MCV), reticulocyte count, plasma hemoglobin, lactate dehydrogenase, and alpha globin genotype. We assessed flow-mediated dilation (FMD) of the brachial artery following distal forearm occlusion (Detterich, Blood 2015) simultaneously with laser Doppler flowmetry (LDF) and photoplethysmography (PPG) in the fingertip. We also measured the increase in microvascular perfusion with a thermal stimulus. The maximal change in vascular perfusion after provocation indicates vasodilatory capacity. Statistical analysis was performed in JMP® version 14 (SAS Institute Inc., USA). Results Twenty-seven subjects were enrolled, including 12 controls (4 alpha globin genes), 10 patients with 3 alpha globin genes and 5 with 2. The mean MCV was lower in subjects missing alpha globin genes than in controls (p=0.0099). Importantly, hemoglobin levels and markers of hemolysis were normal in both groups. There was no detectable difference in FMD between individuals missing one and two alpha globin genes; thus, these groups were combined and labeled as alpha trait for further analyses. FMD was significantly higher in alpha trait subjects after adjusting for age (Figure 1, p=0.0357). Missing alpha globin genes had no effect on microvascular flow by LDF or PPG (data not shown). Discussion FMD is an established and specific predictor of NO bioavailability (Thijssen, Am J Physiol Heart Circ Physiol 2011), and, in addition to shear-mediated NO circulation in conduit vessels, it reflects the sum of flow in multiple arteriolar networks downstream of the conduit artery. Using this method, a difference in endothelial function between control and alpha thalassemia trait was easily detected (Figure 1). Because endothelial alpha globin is present in arterioles rather than conduit vessels (Butcher, Free Radic Biol Med 2014), we measured microvascular flow in a 1-mm3 volume in the skin using a laser Doppler sensor, and in the fingertip by PPG, but were unable to detect an effect of alpha trait. As none of the subjects had anemia or evidence of hemolysis, the significantly increased FMD associated with loss of alpha globin genes is most likely due to increased NO as a result of decreased scavenging by alpha globin. The finding reported here that lower alpha globin gene number is associated with increased NO-related perfusion in humans may explain the beneficial effect of alpha thalassemia trait in SCD and suggests that the presence of alpha thalassemia trait may also play a role in other types of vascular disease. Disclosures Wood: BiomedInformatics: Consultancy; Imago Biosciences: Consultancy; BluebirdBio: Consultancy; Celgene: Consultancy; WorldcareClinical: Consultancy; Philips Medical Systems: Research Funding. Coates:apo pharma (Chiesi Pharma): Consultancy, Honoraria; Sangamo: Honoraria, Membership on an entity's Board of Directors or advisory committees; Agios pharma: Consultancy, Honoraria; Vifor Pharma: Consultancy, Honoraria; Celgene, BMS: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Bluebird Pharma: Honoraria, Membership on an entity's Board of Directors or advisory committees.


Author(s):  
Maria Christina Shanty Larasati ◽  
Mangihut Rumiris ◽  
Mia Ratwita Andarsini ◽  
I Dewa Gede Ugrasena ◽  
Bambang Permono

Thalassemias are heterogeneous group of genetic disorders. β-thalassemia is existed due to impaired production of beta globins chains, which leads to a relative excess of alpha globin chains. The abnormalities of haemoglobin synthesis are usually inherited but may also arise as a secondary manifestation of another disease, most commonly haematological neoplasia. This article presenting two cases of acquired β-thalassemia in children with ALL focusing on the diagnosis and the possible relationship between the two haematological diseases. The first case is a four (4) year old boy with ALL-L1 type at maintenance phase of chemotherapy, he suffered from anaemia with Hb 8.0 g/dL, WBC 22,600/mm3 and platelets count of 200,000/mm3, peripheral blood smear revealed anisocytosis, polychromes, hypochromia, basophilic stippling, and normoblastocytes. The result of Hb electrophoresis of Hb A of 54.9%, Hb F of 29.4%, Hb E of 13.4% and Hb A2 of 2.3%. The patient was diagnosed as ALL-L1 type and β-thalassemia. The second case, is a 13 year old girl with remission ALL-L1 type after chemotherapy, she suffered from anaemia with Hb 6.7 g/dL, WBC 12,400/mm3, platelet count was 200,000/mm3, and peripheral blood smear obtained anisocytosis, hypochromia, normoblastocytes, myelocytes and basophilic stippling. The result of Hb electrophoresis are: Hb F 0.41%, Hb A1c 0.78%, Hb A2 2.95% with the conclusion of a β-thalassemia trait, this patient was diagnosed with ALL-L1 type remission + β-thalassemia trait. The case reviewers assume that acquired β-thalassemia which happened in those patients were the altered expression of globin chain which mechanism for this syndrome might be the acquisition of a mutation that affects RNA or proteins involved in β-globin gene regulation and resulting the reduction of the (α/β)-globin biosynthetic ratios, or/and associated with chemotherapy-inducement.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2639-2639
Author(s):  
Jonathan Michael Flanagan ◽  
Thad A Howard ◽  
Denise M Frohlich ◽  
William Herbert Schultz ◽  
Catherine Driscoll ◽  
...  

Abstract Abstract 2639 Introduction: Stroke is perhaps the most catastrophic complication of sickle cell anemia (SCA), occurring in 11% of patients with SCA before 20 years of age. There is a definite need for biomarkers that could predict which children with SCA are at greatest risk for developing these irreversible cerebrovascular events. Many candidate genetic polymorphisms have been proposed to affect stroke risk but few have been validated, mainly due to the lack of additional patient cohorts. To validate the accuracy of published genetic modifiers, we genotyped polymorphisms in two large prospective cohorts. Methods: Pediatric patients with SCA and documented primary stroke (n=134, average age at stroke = 5.8 ± 2.8 years) were recruited through the Stroke With Transfusions Changing to Hydroxyurea (SWiTCH, NCT00122980) study. As a control non-stroke group, pediatric SCA patients (n=104, average age = 10.2 ± 3.5 years) enrolled in the Hydroxyurea Study of Long-Term Effects (HUSTLE, NCT00305175) were analyzed. All participants in the HUSTLE cohort were over 5 years old and without previous clinical stroke prior to beginning hydroxyurea treatment. We genotyped 38 single nucleotide polymorphisms (SNP's) with published associations for stroke risk, along with α-thalassemia trait, G6PD deficiency and the β-globin haplotype of each patient. Results: Only 5 of the 38 candidate SNPs were associated with stroke risk (Table 1). As previously reported the presence of α-thalassemia trait was also associated with stroke risk (p=0.009). In contrast, G6PD deficiency was not associated with stroke risk. The classical β-globin gene haplotypes were determined for all 238 subjects, resulting in alleles primarily representing the four classical African haplotypes including Benin (57.6%), Central African Republic (21.8%), Senegal (9.2%) and Cameroon (3.2%), as well as atypical haplotypes (8.2%). None of the classical β-globin haplotypes were associated with stroke. However, fine-mapping of the β-globin gene locus identified recombination events within the Aγ-globin gene region, which were significantly over-represented in the stroke versus non-stroke cohorts (n=26.5% vs. n=12.5%, p=0.0001). In particular, one haplotype we term BEN-Memphis has the classical Benin background haplotype but also has recombination between the promoter and intron 2 of the Aγ-globin gene. There were significantly more stroke subjects with this novel BEN-Memphis haplotype (n=9.3% vs. n=0.5%, p<0.001). Conclusions: Our results confirm α-thalassemia trait is significantly protective against stroke in SCA. Fine-mapping of the β-globin gene locus identified novel recombinations within the β-globin gene locus that were associated with stroke risk. These variant haplotypes may be associated with altered γ- or β-globin gene expression. Of the other previously reported polymorphisms, only 5 of 38 SNPs were significantly associated with stroke risk (Table 1). These findings highlight the dangers of accepting non-validated genetic modifiers. The ADCY9 gene is highly expressed in the brain and is critical for neuronal signaling (Hacker BM et al., Genomics 1998). The TEK gene is an endothelial cell expressed tyrosine kinase that is crucial for prevention and recovery from stroke events (Bai Y et al., Neuroscience 2009). The ANXA2 gene has been proposed to affect the hypercoaguable state of SCA (Ling Q et al., J Clin Invest 2004). Finally, mutations in TGFBR3 have been linked with cerebrovascular disease (Santiago-Sim T et al., Stroke 2009). Further investigations at these genetic regions may help define the specific mutations that confer stroke risk or protection in children with SCA. The minor allele frequency (MAF) is given for each SNP. Significance between the control (HUSTLE, n=104) and stroke (SWiTCH, n=134) groups was tested using the Cochran-Armitage test. The HbA2 polymorphism is the Δ3.7kb α-thalassemia single gene deletion. Disclosure: Off Label Use: The off-label drug use of hydroxyurea to treat clinical complications of sickle cell anemia in children will be discussed.


Hemoglobin ◽  
2009 ◽  
Vol 33 (1) ◽  
pp. 72-74 ◽  
Author(s):  
Barry Eng ◽  
Lynda Walker ◽  
John S. Waye

Hemoglobin ◽  
2016 ◽  
Vol 40 (3) ◽  
pp. 213-214
Author(s):  
Jin-Mei Yan ◽  
Jian-Ying Zhou ◽  
Xing-Mei Xie ◽  
Jian Li ◽  
Dong-Zhi Li
Keyword(s):  

Hemoglobin ◽  
2013 ◽  
Vol 37 (2) ◽  
pp. 201-204 ◽  
Author(s):  
John S. Waye ◽  
Barry Eng ◽  
Laurie Hellens ◽  
Betty-Ann Hohenadel ◽  
Lisa M. Nakamura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document