Enhanced Facial Emotion Recognition by Optimal Descriptor Selection with Neural Network

2021 ◽  
pp. 1-20
Author(s):  
P. M. Ashok Kumar ◽  
Jeevan Babu Maddala ◽  
K. Martin Sagayam
2021 ◽  
Vol 1827 (1) ◽  
pp. 012130
Author(s):  
Qi Li ◽  
Yun Qing Liu ◽  
Yue Qi Peng ◽  
Cong Liu ◽  
Jun Shi ◽  
...  

2021 ◽  
Author(s):  
Naveen Kumari ◽  
Rekha Bhatia

Abstract Facial emotion recognition extracts the human emotions from the images and videos. As such, it requires an algorithm to understand and model the relationships between faces and facial expressions, and to recognize human emotions. Recently, deep learning models are extensively utilized enhance the facial emotion recognition rate. However, the deep learning models suffer from the overfitting issue. Moreover, deep learning models perform poorly for images which have poor visibility and noise. Therefore, in this paper, a novel deep learning based facial emotion recognition tool is proposed. Initially, a joint trilateral filter is applied to the obtained dataset to remove the noise. Thereafter, contrast-limited adaptive histogram equalization (CLAHE) is applied to the filtered images to improve the visibility of images. Finally, a deep convolutional neural network is trained. Nadam optimizer is also utilized to optimize the cost function of deep convolutional neural networks. Experiments are achieved by using the benchmark dataset and competitive human emotion recognition models. Comparative analysis demonstrates that the proposed facial emotion recognition model performs considerably better compared to the competitive models.


2021 ◽  
Vol 7 (2) ◽  
pp. 203-206
Author(s):  
Herag Arabian ◽  
Verena Wagner-Hartl ◽  
Knut Moeller

Abstract Facial emotion recognition (FER) is a topic that has gained interest over the years for its role in bridging the gap between Human and Machine interactions. This study explores the potential of real time FER modelling, to be integrated in a closed loop system, to help in treatment of children suffering from Autism Spectrum Disorder (ASD). The aim of this study is to show the differences between implementing Traditional machine learning and Deep learning approaches for FER modelling. Two classification approaches were taken, the first approach was based on classic machine learning techniques using Histogram of Oriented Gradients (HOG) for feature extraction, with a k-Nearest Neighbor and a Support Vector Machine model as classifiers. The second approach uses Transfer Learning based on the popular “Alex Net” Neural Network architecture. The performance of the approaches was based on the accuracy of randomly selected validation sets after training on random training sets of the Oulu-CASIA database. The data analyzed shows that traditional machine learning methods are as effective as deep neural net models and are a good compromise between accuracy, extracted features, computational speed and costs.


2020 ◽  
Vol 28 (1) ◽  
pp. 97-111
Author(s):  
Nadir Kamel Benamara ◽  
Mikel Val-Calvo ◽  
Jose Ramón Álvarez-Sánchez ◽  
Alejandro Díaz-Morcillo ◽  
Jose Manuel Ferrández-Vicente ◽  
...  

Facial emotion recognition (FER) has been extensively researched over the past two decades due to its direct impact in the computer vision and affective robotics fields. However, the available datasets to train these models include often miss-labelled data due to the labellers bias that drives the model to learn incorrect features. In this paper, a facial emotion recognition system is proposed, addressing automatic face detection and facial expression recognition separately, the latter is performed by a set of only four deep convolutional neural network respect to an ensembling approach, while a label smoothing technique is applied to deal with the miss-labelled training data. The proposed system takes only 13.48 ms using a dedicated graphics processing unit (GPU) and 141.97 ms using a CPU to recognize facial emotions and reaches the current state-of-the-art performances regarding the challenging databases, FER2013, SFEW 2.0, and ExpW, giving recognition accuracies of 72.72%, 51.97%, and 71.82% respectively.


2021 ◽  
Vol 6 (1) ◽  
pp. 1-5
Author(s):  
Steven Lawrence ◽  
Taif Anjum ◽  
Amir Shabani

Facial emotion recognition (FER) is a critical component for affective computing in social companion robotics. Current FER datasets are not sufficiently age-diversified as they are predominantly adults excluding seniors above fifty years of age which is the target group in long-term care facilities. Data collection from this age group is more challenging due to their privacy concerns and also restrictions under pandemic situations such as COVID-19. We address this issue by using age augmentation which could act as a regularizer and reduce the overfitting of the classifier as well. Our comprehensive experiments show that improving a typical Deep Convolutional Neural Network (CNN) architecture with facial age augmentation improves both the accuracy and standard deviation of the classifier when predicting emotions of diverse age groups including seniors. The proposed framework is a promising step towards improving a participant’s experience and interactions with social companion robots with affective computing.


Sign in / Sign up

Export Citation Format

Share Document