Exploring Polarimetric Phase of Microwave Backscatter from Typha Wetlands

2020 ◽  
Vol 46 (1) ◽  
pp. 49-66
Author(s):  
Don Atwood ◽  
Michael Battaglia ◽  
Laura Bourgeau-Chavez ◽  
Frank Ahern ◽  
Kevin Murnaghan ◽  
...  
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Bernhard Bauer-Marschallinger ◽  
Senmao Cao ◽  
Claudio Navacchi ◽  
Vahid Freeman ◽  
Felix Reuß ◽  
...  

AbstractWe present a new perspective on Earth’s land surface, providing a normalised microwave backscatter map from spaceborne Synthetic Aperture Radar (SAR) observations. The Sentinel-1 Global Backscatter Model (S1GBM) describes Earth for the period 2016–17 by the mean C-band radar cross section in VV- and VH-polarisation at a 10 m sampling. We processed 0.5 million Sentinel-1 scenes totalling 1.1 PB and performed semi-automatic quality curation and backscatter harmonisation related to orbit geometry effects. The overall mosaic quality excels (the few) existing datasets, with minimised imprinting from orbit discontinuities and successful angle normalisation in large parts of the world. Regions covered by only one or two Sentinel-1 orbits remain challenging, owing to insufficient angular variation and not yet perfect sub-swath thermal noise correction. Supporting the design and verification of upcoming radar sensors, the obtained S1GBM data potentially also serve land cover classification and determination of vegetation and soil states. Here, we demonstrate, as an example of its potential use, the mapping of permanent water bodies and evaluate against the Global Surface Water benchmark.


1977 ◽  
Vol 25 (1) ◽  
pp. 36-42 ◽  
Author(s):  
K. Graf ◽  
D. Tremain ◽  
H. Guthart

1975 ◽  
Vol 70 (3) ◽  
pp. 417-436 ◽  
Author(s):  
T. R. Larson ◽  
J. W. Wright

The growth rates of wind-induced water waves at fixed fetch were measured in a laboratory wave tank using microwave backscatter. The technique strongly filters out all wavenumber component pairs except for a narrow window at the resonant Bragg scattering conditions. For these waves the spectral amplitude was measured as a function of the time after a fixed wind was abruptly started. The radars were aligned to respond to waves travelling in the downwind direction at wavelengths of 0·7-7 cm. Wind speeds ranged from 0·5 to 15 m/s. Fetches of 1·0, 3·0 and 8·4 m were used. In every case, the spectral amplitude initially grew at a single exponential rate β over several orders of magnitude, and then abruptly ceased growing. No dependence of the growth rate on fetch was observed. For all wavelengths and wind speeds the data can be fitted by \[ \beta (k,u_{*},{\rm fetch})=f(k)\,u^n_{*}, \] with n = 1·484 ± 0·027. Here u* is the friction velocity obtained from vertical profiles of mean horizontal velocity. For each wind speed, f(k) had a relative maximum near k = kn ≃ 3·6 cm−1. Rough estimates of β/2ω, where ω is the water wave frequency, and of the wind stress supported by short waves indicate that the observed growth rates are qualitatively very large. These waves are tightly coupled to the wind, and play a significant role in the transfer of momentum from wind to water.


Sign in / Sign up

Export Citation Format

Share Document