sea spray
Recently Published Documents


TOTAL DOCUMENTS

671
(FIVE YEARS 217)

H-INDEX

51
(FIVE YEARS 6)

2022 ◽  
Vol 8 (1) ◽  
pp. 458-465
Author(s):  
Olivier Florent Essouli ◽  
Edmond NICAISE Malanda Nimy ◽  
Timothée Miyouna ◽  
Sophie Aïssatou Gladima-Siby ◽  
Laurent Matini ◽  
...  

To determine the origin and the processes of groundwater mineralization in the Mbeubeuss lake area, the major ion concentrations of the groundwater were compared to those of the rainwaters which constitute the input function of the aquifer of the Quaternary sands in the area of lake Mbeubeuss. The physico-chemistry of groundwater near the public discharge and its surroundings, has shown that the true value of the electrical conductivity of waters are around 2000 µS/cm. Values of electrical conductivity greater than 2000 µS/cm would represent the particular mineralization of ground waters by the public discharge of lake Mbeubeuss. The chemical facies of ground waters are dominated by the sodium and potassium chloride and calcium chloride facies. The study of the relationship between the major chemical elements and the chloride ion and the representation in the modified Chadha diagram of the chemical analyzes of ground waters from the campaigns of July 1998, July 2002 and March 2003, made it possible to highlight the different sources and processes controlling the mineralization of ground waters in the Mbeubeuss Lake area. Despite the proximity to the sea which suggests a considerable contribution of salts by aerosols and sea spray, the mineralization of ground waters in the area of lake Mbeubeuss is largely due to leachate from household waste and the influence of old sediments of the dry lake Mbeubeuss. The main processes controlling the mineralization of ground waters are marine contributions (aerosols and sea spray), dissolution-precipitation of minerals from the aquifer matrix, atmospheric CO2 diffusion, base exchanges, dilution-concentration and anthropogenic pollution.


Physics Today ◽  
2022 ◽  
Vol 75 (1) ◽  
pp. 58-59
Author(s):  
Kyle J. Angle ◽  
Vicki H. Grassian ◽  
Andrew P. Ault
Keyword(s):  

Author(s):  
Chathuri P. Kaluarachchi ◽  
Victor W. Or ◽  
Yiling Lan ◽  
Chamika K. Madawala ◽  
Elias S. Hasenecz ◽  
...  

2021 ◽  
Vol 9 (12) ◽  
pp. 1390
Author(s):  
Xingkun Xu ◽  
Joey J. Voermans ◽  
Qingxiang Liu ◽  
Il-Ju Moon ◽  
Changlong Guan ◽  
...  

While sea spray can significantly impact air–sea heat fluxes, the effect of spray produced by the interaction of wind and waves is not explicitly addressed in current operational numerical models. In the present work, the thermal effects of the sea spray were investigated for an idealized tropical cyclone (TC) through the implementation of different sea spray models into a coupled air–sea–wave numerical system. Wave-Reynolds-dependent and wave-steepness-dependent sea spray models were applied to test the sensitivity of local wind, wave, and ocean fields of this TC system. Results show that while the sensible heat fluxes decreased by up to 231 W m−2 (364%) and 159 W m−2 (251%), the latent heat fluxes increased by up to 359 W m−2 (89%) and 263 W m−2 (76%) in the simulation period, respectively. This results in an increase of the total heat fluxes by up to 135 W m−2 (32%) and 123 W m−2 (30%), respectively. Based on different sea spray models, sea spray decreases the minimum sea level pressure by up to 7 hPa (0.7%) and 8 hPa (0.8%), the maximum wind speed increases by up to 6.1 m s−1 (20%) and 5.7 m s−1 (19%), the maximum significant wave height increases by up to 1.1 m (17%) and 1.6 m (25%), and the minimum sea surface temperature decreases by up to 0.2 °C (0.8%) and 0.15 °C (0.6%), respectively. As the spray has such significant impacts on atmospheric and oceanic environments, it needs to be included in TC forecasting models.


2021 ◽  
pp. 112555
Author(s):  
Lingrui Liu ◽  
Lin Du ◽  
Li Xu ◽  
Jianlong Li ◽  
Narcisse T. Tsona

2021 ◽  
Vol 241 ◽  
pp. 110077
Author(s):  
Shafiul Mintu ◽  
David Molyneux ◽  
Bruce Colbourne
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document