scholarly journals Potential of resistance inducers for soybean rust management

Author(s):  
Samuel De Paula ◽  
Sabrina Holz ◽  
Dablieny Héllen Garcia Souza ◽  
Sérgio Florentino Pascholati
Author(s):  
Ralph von Qualen ◽  
Xiao-Bing Yang

Author(s):  
Ralph von Qualen ◽  
Xiao-Bing Yang

2021 ◽  
Vol 42 (11) ◽  
pp. 4177-4198
Author(s):  
Renato Herrig Furlanetto ◽  
Marcos Rafael Nanni ◽  
Monica Sayuri Mizuno ◽  
Luís Guilherme Teixeira Crusiol ◽  
Camila Rocco da Silva

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1043
Author(s):  
George T. Tziros ◽  
Anastasios Samaras ◽  
George S. Karaoglanidis

Olive leaf spot (OLS) caused by Fusicladiumoleagineum is mainly controlled using copper fungicides. However, the replacement of copper-based products with eco-friendly alternatives is a priority. The use of plant resistance-inducers (PRIs) or biological control agents (BCAs) could contribute in this direction. In this study we investigated the potential use of three PRIs (laminarin, acibenzolar-S-methyl, harpin) and a BCA (Bacillus amyloliquefaciens FZB24) for the management of OLS. The tested products provided control efficacy higher than 68%. In most cases, dual applications provided higher (p < 0.05) control efficacies compared to that achieved by single applications. The highest control efficacy of 100% was achieved by laminarin. Expression analysis of the selected genes by RT-qPCR revealed different kinetics of induction. In laminarin-treated plants, for most of the tested genes a higher induction rate (p < 0.05) was observed at 3 days post application. Pal, Lox, Cuao and Mpol were the genes with the higher inductions in laminarin-treated and artificially inoculated plants. The results of this study are expected to contribute towards a better understanding of PRIs in olive culture and the optimization of OLS control, while they provide evidence for potential contributions in the reduction of copper accumulation in the environment.


2021 ◽  
Author(s):  
Jhonatan Paulo Barro ◽  
Kaique S. Alves ◽  
Cláudia V. Godoy ◽  
Alfredo R. Dias ◽  
Carlos A. Forcelini ◽  
...  
Keyword(s):  

Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1818
Author(s):  
Francisco Hernández-Aparicio ◽  
Purificación Lisón ◽  
Ismael Rodrigo ◽  
José María Bellés ◽  
M. Pilar López-Gresa

New strategies of control need to be developed with the aim of economic and environmental sustainability in plant and crop protection. Metabolomics is an excellent platform for both understanding the complex plant–pathogen interactions and unraveling new chemical control strategies. GC-MS-based metabolomics, along with a phytohormone analysis of a compatible and incompatible interaction between tomato plants and Fusarium oxysporum f. sp. lycopersici, revealed the specific volatile chemical composition and the plant signals associated with them. The susceptible tomato plants were characterized by the over-emission of methyl- and ethyl-salicylate as well as some fatty acid derivatives, along with an activation of salicylic acid and abscisic acid signaling. In contrast, terpenoids, benzenoids, and 2-ethylhexanoic acid were differentially emitted by plants undergoing an incompatible interaction, together with the activation of the jasmonic acid (JA) pathway. In accordance with this response, a higher expression of several genes participating in the biosynthesis of these volatiles, such as MTS1, TomloxC,TomloxD, and AOS, as well as JAZ7, a JA marker gene, was found to be induced by the fungus in these resistant plants. The characterized metabolome of the immune tomato plants could lead to the development of new resistance inducers against Fusarium wilt treatment.


2011 ◽  
Vol 5 (1) ◽  
pp. 118-122 ◽  
Author(s):  
H. Roger Boerma ◽  
Maria J. Monteros ◽  
Bo-Keun Ha ◽  
E. Dale Wood ◽  
Daniel V. Phillips ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document