Self-similar stochastic processes with stationary increments as limits of particle systems

Author(s):  
Łukasz Treszczotko
Fractals ◽  
2001 ◽  
Vol 09 (04) ◽  
pp. 415-428 ◽  
Author(s):  
ROBERT MAŁYSZ

We generalize the notion of fractal interpolation functions (FIFs) to stochastic processes. We prove that the Minkowski dimension of trajectories of such interpolations for self-similar processes with stationary increments converges to 2-α. We generalize the notion of vector-valued FIFs to stochastic processes. Trajectories of such interpolations based on an equally spaced sample of size n on the interval [0,1] converge to the trajectory of the original process. Moreover, for fractional Brownian motion and, more generally, for self-similar processes with stationary increments (α-sssi) processes, upper bounds of the Minkowski dimensions of the image and the graph converge to the Hausdorff dimension of the image and the graph of the original process, respectively.


2020 ◽  
Vol 57 (4) ◽  
pp. 1234-1251
Author(s):  
Shuyang Bai

AbstractHermite processes are a class of self-similar processes with stationary increments. They often arise in limit theorems under long-range dependence. We derive new representations of Hermite processes with multiple Wiener–Itô integrals, whose integrands involve the local time of intersecting stationary stable regenerative sets. The proof relies on an approximation of regenerative sets and local times based on a scheme of random interval covering.


1974 ◽  
Vol 6 (3) ◽  
pp. 512-523 ◽  
Author(s):  
B. Picinbono

Many physical problems are described by stochastic processes with stationary increments. We present a general description of such processes. In particular we give an expression of a process in terms of its increments and we show that there are two classes of processes: diffusion and asymptotically stationary. Moreover, we show that thenth increments are given by a linear filtering of an arbitrary stationary process.


2020 ◽  
Vol 72 (9) ◽  
pp. 1304-1312
Author(s):  
X. Chen

UDC 519.21 Given the i.i.d. -valued stochastic processes with the stationary increments, a minimal condition is provided for the occupation measure to be absolutely continuous with respect to the Lebesgue measure on An isometry identity related to the resulting density (known as intersection local time) is also established.


Sign in / Sign up

Export Citation Format

Share Document