scholarly journals Target2DeNovoDrug: a novel programmatic tool for in silico-deep learning based de novo drug design for any target of interest

Author(s):  
Rafal Madaj ◽  
Ben Geoffrey ◽  
Akhil Sanker ◽  
Pavan Preetham Valluri
2020 ◽  
Author(s):  
Rafal Madaj ◽  
Ben Geoffrey A S ◽  
Pavan Preetham Valluri ◽  
Akhil Sanker

The on-going data-science and AI revolution offers researchers with fresh set of tools to approach structure-based drug design problems in the computer aided drug design space. A novel programmatic tool that can be used in aid of in silico-deep learning based de novo drug design for any target of interest has been reported. Once the user specifies the target of interest, the programmatic workflow of the tool generates novel SMILES of compounds that are likely to be active against the target. The tool also performs a computationally efficient In-Silico modeling of the target and the newly generated compounds and stores the results in the working folder of the user. A demonstrated use of the tool has been shown with the target signatures of Tumor Necrosis Factor-Alpha, an important therapeutic target in the case of anti-inflammatory treatment. The future scope of the tool involves, running the tool on a High Performance Cluster for all known target signatures to generate data that will be useful to drive AI and Big data driven drug discovery. The code is hosted, maintained and supported at the GitHub repository given in link below https://github.com/bengeof/Target2DeNovoDrug


2021 ◽  
Vol 61 (2) ◽  
pp. 621-630
Author(s):  
Sowmya Ramaswamy Krishnan ◽  
Navneet Bung ◽  
Gopalakrishnan Bulusu ◽  
Arijit Roy

2021 ◽  
Author(s):  
Xuhan Liu ◽  
Kai Ye ◽  
Herman W. T. van Vlijmen ◽  
Adriaan P. IJzerman ◽  
Gerard J. P. van Westen

Due to the large drug-like chemical space available to search for feasible drug-like molecules, rational drug design often starts from specific scaffolds to which side chains/substituents are added or modified. With the rapid growth of the application of deep learning in drug discovery, a variety of effective approaches have been developed for de novo drug design. In previous work, we proposed a method named DrugEx, which can be applied in polypharmacology based on multi-objective deep reinforcement learning. However, the previous version is trained under fixed objectives similar to other known methods and does not allow users to input any prior information (i.e. a desired scaffold). In order to improve the general applicability, we updated DrugEx to design drug molecules based on scaffolds which consist of multiple fragments provided by users. In this work, the Transformer model was employed to generate molecular structures. The Transformer is a multi-head self-attention deep learning model containing an encoder to receive scaffolds as input and a decoder to generate molecules as output. In order to deal with the graph representation of molecules we proposed a novel positional encoding for each atom and bond based on an adjacency matrix to extend the architecture of the Transformer. Each molecule was generated by growing and connecting procedures for the fragments in the given scaffold that were unified into one model. Moreover, we trained this generator under a reinforcement learning framework to increase the number of desired ligands. As a proof of concept, our proposed method was applied to design ligands for the adenosine A2A receptor (A2AAR) and compared with SMILES-based methods. The results demonstrated the effectiveness of our method in that 100% of the generated molecules are valid and most of them had a high predicted affinity value towards A2AAR with given scaffolds.


2021 ◽  
Vol 22 (18) ◽  
pp. 9983
Author(s):  
Jintae Kim ◽  
Sera Park ◽  
Dongbo Min ◽  
Wankyu Kim

Drug discovery based on artificial intelligence has been in the spotlight recently as it significantly reduces the time and cost required for developing novel drugs. With the advancement of deep learning (DL) technology and the growth of drug-related data, numerous deep-learning-based methodologies are emerging at all steps of drug development processes. In particular, pharmaceutical chemists have faced significant issues with regard to selecting and designing potential drugs for a target of interest to enter preclinical testing. The two major challenges are prediction of interactions between drugs and druggable targets and generation of novel molecular structures suitable for a target of interest. Therefore, we reviewed recent deep-learning applications in drug–target interaction (DTI) prediction and de novo drug design. In addition, we introduce a comprehensive summary of a variety of drug and protein representations, DL models, and commonly used benchmark datasets or tools for model training and testing. Finally, we present the remaining challenges for the promising future of DL-based DTI prediction and de novo drug design.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012125
Author(s):  
T Sesha Sai Aparna ◽  
T Anuradha

Abstract From the moment of identifying the fundamental cause of an illness to its availability in the marketplace, it takes an average of 10 years and almost $2.6 billion dollars to develop a medication. We’re actually hunting for a needle in a haystack, which takes a lot of time, effort, and money. In a solution space of between 1030 and 10100 synthetically viable compounds, we’re seeking for the one molecule that can turn off a disease at the molecular level. The chemical solution space is just too large to adequately screen for the desired molecule. Only a small percentage of the synthetically viable compounds for wet lab research are stored in pharmaceutical chemical repositories. Computational de novo drug design can be used to explore this vast chemical space and develop previously undesigned compounds. Computational drug design can cut the amount of time spent in the discovery phase in half, resulting in a shorter time to market and lower drug prices. Deep learning and artificial intelligence (AI) have opened up new perspectives in cheminformatics, especially in molecules generative models. Recurrent neural networks (RNNs) trained with molecules in the SMILES text format, in particular, are very good at exploring the chemical space. Two baseline models were created for generating molecules, one of the model includes an encoder that takes SMILES as input and then develops a deep generative LSTM model which acts as a hidden layer and the output from layers acts as an input to the decoder. The other baseline model acts the same as the above-mentioned model but it includes latent space, it is simply a representation of compressed data that bring related data points closer together physically. To learn data properties and find simpler data representations for analysis, and weights which are obtained from the previous model to generate more efficient molecules. Then created a custom function to play with the temperature of the softmax activation function which creates a threshold value for the valid molecules to generate. This model enables us to produce new molecules through successful exploration.


2022 ◽  
Vol 72 ◽  
pp. 135-144
Author(s):  
Mingyang Wang ◽  
Zhe Wang ◽  
Huiyong Sun ◽  
Jike Wang ◽  
Chao Shen ◽  
...  

2019 ◽  
Author(s):  
R Winter ◽  
F Montanari ◽  
DA Clevert

2021 ◽  
Author(s):  
Ben Geoffrey ◽  
Rafal Madaj ◽  
Pavan Preetham Valluri ◽  
Akhil Sanker

The past decade has seen a surge in the range of application data science, machine learning, deep learning, and AI methods to drug discovery. The presented work involves an assemblage of a variety of AI methods for drug discovery along with the incorporation of in silico techniques to provide a holistic tool for automated drug discovery. When drug candidates are required to be identified for aparticular drug target of interest, the user is required to provide the tool target signatures in the form of an amino acid sequence or its corresponding nucleotide sequence. The tool collects data registered on PubChem required to perform an automated QSAR and with the validated QSAR model, prediction and drug lead generation are carried out. This protocol we call Target2Drug. This is followed by a protocol we call Target2DeNovoDrug wherein novel molecules with likely activityagainst the target are generated de novo using a generative LSTM model. It is often required in drug discovery that the generated molecules possess certain properties like drug-likeness, and therefore to optimize the generated de novo molecules toward the required drug-like property we use a deep learning model called DeepFMPO, and this protocol we call Target2DeNovoDrugPropMax. This is followed by the fast automated AutoDock-Vina based in silico modeling and profiling of theinteraction of optimized drug leads and the drug target. This is followed by an automated execution of the Molecular Dynamics protocol that is also carried out for the complex identified with the best protein-ligand interaction from the AutoDock- Vina based virtual screening. The results are stored in the working folder of the user. The code is maintained, supported, and provide for use in thefollowing GitHub repositoryhttps://github.com/bengeof/Target2DeNovoDrugPropMaxAnticipating the rise in the use of quantum computing and quantum machine learning in drug discovery we use the Penny-lane interface to quantum hardware to turn classical Keras layers used in our machine/deep learning models into a quantum layer and introduce quantum layers into our classical models to produce a quantum-classical machine/deep learning hybrid model of our tool and the code corresponding to the same is provided belowhttps://github.com/bengeof/QPoweredTarget2DeNovoDrugPropMax


Sign in / Sign up

Export Citation Format

Share Document