An Alternate Proof of Cramer's Rule

1988 ◽  
Vol 19 (2) ◽  
pp. 171-171 ◽  
Author(s):  
Stephen H. Friedberg
1988 ◽  
Vol 19 (2) ◽  
pp. 171
Author(s):  
Stephen H. Friedberg

2021 ◽  
Vol 30 (2) ◽  
Author(s):  
Tom Gur ◽  
Yang P. Liu ◽  
Ron D. Rothblum

AbstractInteractive proofs of proximity allow a sublinear-time verifier to check that a given input is close to the language, using a small amount of communication with a powerful (but untrusted) prover. In this work, we consider two natural minimally interactive variants of such proofs systems, in which the prover only sends a single message, referred to as the proof. The first variant, known as -proofs of Proximity (), is fully non-interactive, meaning that the proof is a function of the input only. The second variant, known as -proofs of Proximity (), allows the proof to additionally depend on the verifier's (entire) random string. The complexity of both s and s is the total number of bits that the verifier observes—namely, the sum of the proof length and query complexity. Our main result is an exponential separation between the power of s and s. Specifically, we exhibit an explicit and natural property $$\Pi$$ Π that admits an with complexity $$O(\log n)$$ O ( log n ) , whereas any for $$\Pi$$ Π has complexity $$\tilde{\Omega}(n^{1/4})$$ Ω ~ ( n 1 / 4 ) , where n denotes the length of the input in bits. Our lower bound also yields an alternate proof, which is more general and arguably much simpler, for a recent result of Fischer et al. (ITCS, 2014). Also, Aaronson (Quantum Information & Computation 2012) has shown a $$\Omega(n^{1/6})$$ Ω ( n 1 / 6 ) lower bound for the same property $$\Pi$$ Π .Lastly, we also consider the notion of oblivious proofs of proximity, in which the verifier's queries are oblivious to the proof. In this setting, we show that s can only be quadratically stronger than s. As an application of this result, we show an exponential separation between the power of public and private coin for oblivious interactive proofs of proximity.


Author(s):  
Nicoleta Mirela Marin ◽  
Gheorghe Batrinescu ◽  
Mihai Nita-Lazar ◽  
Luoana Florentina Pascu ◽  
Carol Blaziu Lehr

Two spectrometric methods have been developed for quantitative simultaneous determination of procaine hydrochloride (PH·HCl), procainamide hydrochloride (PHA·HCl) and lidocaine (Lid) from synthetic mixture. The methods employed are first derivative spectrometry, using zero crossing method and multicomponent analysis which is based on the additivity law. Using first derivative spectrometry, the wavelength selected for the quantitative determination of PH·HCl was 237 nm for Lid was 242 nm and for PHA·HCl was 290 nm in mixture. The method is linear when the concentration ranged between 6.62-9.93 μg/mL for PH·HCl, 6.43-9.64 for PHA·HCl and 5.56-8.35 for Lid. The multicomponent analysis is a direct method and involves the absorbance measurements of at three different wavelengths. The molar absorption coefficients values were calculated at each wavelength and the concentration of PH·HCl, PHA·HCl and Lid from mixture was determined by solving matrix using Cramer's rule. The recovery of each compound in mixture was calculated and it is 101.4 % for PH·HCl, 100.4 % for PHA·HCl and 98.4 % for Lid.


Author(s):  
Samsul Arifin ◽  
Indra Bayu Muktyas

An SPL can be represented as a multiplication of the coefficient matrix and solution vector of the SPL. Determining the solution of an SPL can use the inverse matrix method and Cramer's rule, where both can use the concept of the determinant of a matrix. If the coefficient matrix is a unimodular matrix, then all solutions of an SPL are integers. In this paper we will present a method of generating a unimodular matrix using Python so that it can be utilized on an SPL. Keywords: SPL, Unimodular Matrix, Python


10.37236/1083 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
Aaron N. Siegel

The reduced canonical form of a loopfree game $G$ is the simplest game infinitesimally close to $G$. Reduced canonical forms were introduced by Calistrate, and Grossman and Siegel provided an alternate proof of their existence. In this paper, we show that the Grossman–Siegel construction generalizes to find reduced canonical forms of certain loopy games.


Sign in / Sign up

Export Citation Format

Share Document