scholarly journals An Exponential Separation Between MA and AM Proofs of Proximity

2021 ◽  
Vol 30 (2) ◽  
Author(s):  
Tom Gur ◽  
Yang P. Liu ◽  
Ron D. Rothblum

AbstractInteractive proofs of proximity allow a sublinear-time verifier to check that a given input is close to the language, using a small amount of communication with a powerful (but untrusted) prover. In this work, we consider two natural minimally interactive variants of such proofs systems, in which the prover only sends a single message, referred to as the proof. The first variant, known as -proofs of Proximity (), is fully non-interactive, meaning that the proof is a function of the input only. The second variant, known as -proofs of Proximity (), allows the proof to additionally depend on the verifier's (entire) random string. The complexity of both s and s is the total number of bits that the verifier observes—namely, the sum of the proof length and query complexity. Our main result is an exponential separation between the power of s and s. Specifically, we exhibit an explicit and natural property $$\Pi$$ Π that admits an with complexity $$O(\log n)$$ O ( log n ) , whereas any for $$\Pi$$ Π has complexity $$\tilde{\Omega}(n^{1/4})$$ Ω ~ ( n 1 / 4 ) , where n denotes the length of the input in bits. Our lower bound also yields an alternate proof, which is more general and arguably much simpler, for a recent result of Fischer et al. (ITCS, 2014). Also, Aaronson (Quantum Information & Computation 2012) has shown a $$\Omega(n^{1/6})$$ Ω ( n 1 / 6 ) lower bound for the same property $$\Pi$$ Π .Lastly, we also consider the notion of oblivious proofs of proximity, in which the verifier's queries are oblivious to the proof. In this setting, we show that s can only be quadratically stronger than s. As an application of this result, we show an exponential separation between the power of public and private coin for oblivious interactive proofs of proximity.

2016 ◽  
Vol 94 (11) ◽  
pp. 1142-1147 ◽  
Author(s):  
Hong-Mei Zou ◽  
Mao-Fa Fang

Based on the entropic uncertainty relation in the presence of quantum memory, the entanglement witness of two atoms in dissipative cavities is investigated by using the time-convolutionless master-equation approach. We discuss in detail the influences of the non-Markovian effect and the atom–cavity coupling on the lower bound of the entropic uncertainty relation and entanglement witness. The results show that, with the coupling increasing, the number of the time zone witnessed will increase so that the entanglement can be repeatedly witnessed. Enhancing the non-Markovian effect can add the number of the time zone witnessed and lengthen the time of entanglement witness. The results can be applied in quantum measurement, entanglement detecting, quantum cryptography task, and quantum information processing.


2012 ◽  
Vol 12 (7&8) ◽  
pp. 670-676
Author(s):  
Paul Beame ◽  
Widad Machmouchi

We show that any quantum algorithm deciding whether an input function $f$ from $[n]$ to $[n]$ is 2-to-1 or almost 2-to-1 requires $\Theta(n)$ queries to $f$. The same lower bound holds for determining whether or not a function $f$ from $[2n-2]$ to $[n]$ is surjective. These results yield a nearly linear $\Omega(n/\log n)$ lower bound on the quantum query complexity of $\cl{AC}^0$. The best previous lower bound known for any $\cl{AC^0}$ function was the $\Omega ((n/\log n)^{2/3})$ bound given by Aaronson and Shi's $\Omega(n^{2/3})$ lower bound for the element distinctness problem.


2008 ◽  
Vol 8 (8&9) ◽  
pp. 819-833
Author(s):  
J. Watrous

Entanglement is sometimes helpful in distinguishing between quantum operations, as differences between quantum operations can become magnified when their inputs are entangled with auxiliary systems. Bounds on the dimension of the auxiliary system needed to optimally distinguish quantum operations are known in several situations. For instance, the dimension of the auxiliary space never needs to exceed the dimension of the input space of the operations for optimal distinguishability, while no auxiliary system whatsoever is needed to optimally distinguish unitary operations. Another bound, which follows from work of R. Timoney , is that optimal distinguishability is always possible when the dimension of the auxiliary system is twice the number of operators needed to express the difference between the quantum operations in Kraus form. This paper provides an alternate proof of this fact that is based on concepts and tools that are familiar to quantum information theorists.


2015 ◽  
Vol 13 (04) ◽  
pp. 1350059
Author(s):  
Loïck Magnin ◽  
Jérémie Roland

The polynomial method and the adversary method are the two main techniques to prove lower bounds on quantum query complexity, and they have so far been considered as unrelated approaches. Here, we show an explicit reduction from the polynomial method to the multiplicative adversary method. The proof goes by extending the polynomial method from Boolean functions to quantum state generation problems. In the process, the bound is even strengthened. We then show that this extended polynomial method is a special case of the multiplicative adversary method with an adversary matrix that is independent of the function. This new result therefore provides insight on the reason why in some cases the adversary method is stronger than the polynomial method. It also reveals a clear picture of the relation between the different lower bound techniques, as it implies that all known techniques reduce to the multiplicative adversary method.


2011 ◽  
Vol 09 (04) ◽  
pp. 1081-1090
Author(s):  
XIAO-YU CHEN ◽  
LI-ZHEN JIANG

Quantum capacity of the lossy Gaussian quantum channel remains an open problem in quantum information theory, although the upper and lower bounds are well-known. We show that for the n-use of the channel, the input of entangled commutative Gaussian state does not improve the lower bound of the capacity. When the total energy is limited, an unfair distribution of the energy among the n-use will improve the lower bound.


2019 ◽  
Vol 21 (08) ◽  
pp. 1850061 ◽  
Author(s):  
Achenef Tesfahun

It is shown that the uniform radius of spatial analyticity [Formula: see text] of solutions at time [Formula: see text] to the KdV equation cannot decay faster than [Formula: see text] as [Formula: see text] given initial data that is analytic with fixed radius [Formula: see text]. This improves a recent result of Selberg and da Silva, where they proved a decay rate of [Formula: see text] for arbitrarily small positive [Formula: see text]. The main ingredients in the proof are almost conservation law for the solution to the KdV equation in space of analytic functions and space-time dyadic bilinear [Formula: see text] estimates associated with the KdV equation.


2010 ◽  
Vol 06 (05) ◽  
pp. 959-988 ◽  
Author(s):  
FRÉDÉRIC JOUHET ◽  
ELIE MOSAKI

Dans cet article, nous nous intéressons à un q-analogue aux entiers positifs de la fonction zêta de Riemann, que l'on peut écrire pour s ∈ ℕ* sous la forme ζq(s) = ∑k≥1qk∑d|kds-1. Nous donnons une nouvelle minoration de la dimension de l'espace vectoriel sur ℚ engendré, pour 1/q ∈ ℤ\{-1; 1} et A entier pair, par 1, ζq(3), ζq(5), …, ζq(A - 1). Ceci améliore un résultat récent de Krattenthaler, Rivoal et Zudilin ([13]). En particulier notre résultat a pour conséquence le fait que pour 1/q ∈ ℤ\{-1; 1}, au moins l'un des nombres ζq(3), ζq(5), ζq(7), ζq(9) est irrationnel. In this paper, we focus on a q-analogue of the Riemann zeta function at positive integers, which can be written for s ∈ ℕ* by ζq(s) = ∑k≥1qk∑d|kds-1. We give a new lower bound for the dimension of the vector space over ℚ spanned, for 1/q ∈ ℤ\{-1; 1} and an even integer A, by 1, ζq(3), ζq(5), …, ζq(A-1). This improves a recent result of Krattenthaler, Rivoal and Zudilin ([13]). In particular, a consequence of our result is that for 1/q ∈ ℤ\{-1; 1}, at least one of the numbers ζq(3), ζq(5), ζq(7), ζq(9) is irrational.


Sign in / Sign up

Export Citation Format

Share Document