interactive proofs
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 22)

H-INDEX

22
(FIVE YEARS 2)

2022 ◽  
Vol 69 (1) ◽  
pp. 1-82
Author(s):  
Yael Tauman Kalai ◽  
Ran Raz ◽  
Ron D. Rothblum

We construct a 1-round delegation scheme (i.e., argument-system) for every language computable in time t = t ( n ), where the running time of the prover is poly ( t ) and the running time of the verifier is n · polylog ( t ). In particular, for every language in P we obtain a delegation scheme with almost linear time verification. Our construction relies on the existence of a computational sub-exponentially secure private information retrieval ( PIR ) scheme. The proof exploits a curious connection between the problem of computation delegation and the model of multi-prover interactive proofs that are sound against no-signaling (cheating) strategies , a model that was studied in the context of multi-prover interactive proofs with provers that share quantum entanglement, and is motivated by the physical principle that information cannot travel faster than light. For any language computable in time t = t ( n ), we construct a multi-prover interactive proof ( MIP ), that is, sound against no-signaling strategies, where the running time of the provers is poly ( t ), the number of provers is polylog ( t ), and the running time of the verifier is n · polylog ( t ). In particular, this shows that the class of languages that have polynomial-time MIP s that are sound against no-signaling strategies, is exactly EXP . Previously, this class was only known to contain PSPACE . To convert our MIP into a 1-round delegation scheme, we use the method suggested by Aiello et al. (ICALP, 2000), which makes use of a PIR scheme. This method lacked a proof of security. We prove that this method is secure assuming the underlying MIP is secure against no-signaling provers.


Author(s):  
David Lehnherr ◽  
Zoran Ognjanović ◽  
Thomas Studer
Keyword(s):  

2021 ◽  
Author(s):  
Jiaheng Zhang ◽  
Tianyi Liu ◽  
Weijie Wang ◽  
Yinuo Zhang ◽  
Dawn Song ◽  
...  

Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2536
Author(s):  
María Alejandra Osorio Angarita ◽  
Agustín Moreno Cañadas ◽  
Isaías David Marín Gaviria

We introduce an algorithm based on posets and tiled orders to generate emerging images. Experimental results allow concluding that images obtained with these kinds of tools are easy to detect by human beings. It is worth pointing out that the emergence phenomenon is a Gestalt grouping law associated with AI open problems. For this reason, emerging images have arisen in the last few years as a tool in the context of the development of human interactive proofs.


2021 ◽  
Vol 30 (2) ◽  
Author(s):  
Tom Gur ◽  
Yang P. Liu ◽  
Ron D. Rothblum

AbstractInteractive proofs of proximity allow a sublinear-time verifier to check that a given input is close to the language, using a small amount of communication with a powerful (but untrusted) prover. In this work, we consider two natural minimally interactive variants of such proofs systems, in which the prover only sends a single message, referred to as the proof. The first variant, known as -proofs of Proximity (), is fully non-interactive, meaning that the proof is a function of the input only. The second variant, known as -proofs of Proximity (), allows the proof to additionally depend on the verifier's (entire) random string. The complexity of both s and s is the total number of bits that the verifier observes—namely, the sum of the proof length and query complexity. Our main result is an exponential separation between the power of s and s. Specifically, we exhibit an explicit and natural property $$\Pi$$ Π that admits an with complexity $$O(\log n)$$ O ( log n ) , whereas any for $$\Pi$$ Π has complexity $$\tilde{\Omega}(n^{1/4})$$ Ω ~ ( n 1 / 4 ) , where n denotes the length of the input in bits. Our lower bound also yields an alternate proof, which is more general and arguably much simpler, for a recent result of Fischer et al. (ITCS, 2014). Also, Aaronson (Quantum Information & Computation 2012) has shown a $$\Omega(n^{1/6})$$ Ω ( n 1 / 6 ) lower bound for the same property $$\Pi$$ Π .Lastly, we also consider the notion of oblivious proofs of proximity, in which the verifier's queries are oblivious to the proof. In this setting, we show that s can only be quadratically stronger than s. As an application of this result, we show an exponential separation between the power of public and private coin for oblivious interactive proofs of proximity.


2021 ◽  
Vol Volume 17, Issue 3 ◽  
Author(s):  
Dan Frumin ◽  
Robbert Krebbers ◽  
Lars Birkedal

We present a new version of ReLoC: a relational separation logic for proving refinements of programs with higher-order state, fine-grained concurrency, polymorphism and recursive types. The core of ReLoC is its refinement judgment $e \precsim e' : \tau$, which states that a program $e$ refines a program $e'$ at type $\tau$. ReLoC provides type-directed structural rules and symbolic execution rules in separation-logic style for manipulating the judgment, whereas in prior work on refinements for languages with higher-order state and concurrency, such proofs were carried out by unfolding the judgment into its definition in the model. ReLoC's abstract proof rules make it simpler to carry out refinement proofs, and enable us to generalize the notion of logically atomic specifications to the relational case, which we call logically atomic relational specifications. We build ReLoC on top of the Iris framework for separation logic in Coq, allowing us to leverage features of Iris to prove soundness of ReLoC, and to carry out refinement proofs in ReLoC. We implement tactics for interactive proofs in ReLoC, allowing us to mechanize several case studies in Coq, and thereby demonstrate the practicality of ReLoC. ReLoC Reloaded extends ReLoC (LICS'18) with various technical improvements, a new Coq mechanization, and support for Iris's prophecy variables. The latter allows us to carry out refinement proofs that involve reasoning about the program's future. We also expand ReLoC's notion of logically atomic relational specifications with a new flavor based on the HOCAP pattern by Svendsen et al.


2021 ◽  
pp. 395-409
Author(s):  
Pedro Montealegre ◽  
Diego Ramírez-Romero ◽  
Ivan Rapaport
Keyword(s):  

2020 ◽  
Vol 328 ◽  
pp. 1-17
Author(s):  
Mauricio Ayala-Rincón ◽  
Thaynara Arielly de Lima
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document