BOILING HEAT TRANSFER MECHANISMS IN A HORIZONTAL TUBE BUNDLE

1993 ◽  
Vol 6 (3) ◽  
pp. 259-271 ◽  
Author(s):  
J.-T. Hsu ◽  
C.-S. Lin ◽  
M.-K. Jensen
1988 ◽  
Vol 110 (4a) ◽  
pp. 976-981 ◽  
Author(s):  
M. K. Jensen ◽  
J.-T. Hsu

Boiling heat transfer outside of a section of a uniformly heated horizontal tube bundle in an upward crossflow was investigated using R-113 as the working fluid. The inline tube bundle had five columns and 27 rows with a pitch-to-diameter ratio of 1.3. Heat transfer coefficients obtained from the 14 instrumented tubes are reported for a range of fluid and flow conditions; slightly subcooled liquid inlet conditions were used. At most heat fluxes there was no significant variation in the local heat transfer coefficients throughout the tube bundle. However, at low heat fluxes and mass velocities, the heat transfer coefficient increased at positions higher in the tube bundle. As pressure and mass velocity increased so did the heat transfer coefficients. For the local heat transfer coefficient, a Chen-type correlation is compared to the data; the data tend to be overpredicted by about 20 percent. Reasons for the overprediction are suggested.


2013 ◽  
Author(s):  
Zhuqiang Yang ◽  
Qincheng Bi ◽  
Yong Guo ◽  
Zhaohui Liu ◽  
Jianguo Yan

Author(s):  
Lu Zhang ◽  
David M. Christopher

Bubbles have been observed moving along heated wires during subcooled nucleate boiling as they are driven by Marangoni convection around the bubbles. This paper presents more detailed observations of the vapor bubble interactions and moving bubble behavior during subcooled nucleate boiling on a heated microwire. The experimental results show that moving bubbles coalesce or rebound from other bubbles and that bubbles hop on the wire. These observations show how bubble interactions significantly affect nucleate boiling heat transfer rates and how Marangoni flow plays an important role in microscale nucleate boiling heat transfer mechanisms.


Sign in / Sign up

Export Citation Format

Share Document