All optical active high decoder using integrated 2D square lattice photonic crystals

2015 ◽  
Vol 62 (19) ◽  
pp. 1643-1649 ◽  
Author(s):  
Tamer A. Moniem
2021 ◽  
Vol 53 (2) ◽  
Author(s):  
Fariborz Parandin ◽  
Reza Kamarian ◽  
Mohamadreza Jomour

2021 ◽  
Author(s):  
Fariborz Parandin ◽  
Reza Kamarian ◽  
Mohamadreza Jomour

Abstract An optical comparator is an important logic circuit used in digital designs. Photonic crystals are among the platforms for implementing different kinds of gates and logic circuits. Photonic crystals are structures with alternating refractive indices. In digital optics, logical values “0” and “1” are defined based on the level of optical power. In this paper, an optical comparator based on square-lattice photonic crystals is designed and simulated. In the design of this comparator, a small-sized structure is used. The simulation results show that in the proposed comparator, there is a long distance between logical values ​​“0” and “1”. Due to the small size of this comparator and the adequate distance between logical values ​​“0” and “1”, this structure suits photonic integrated circuits with high accuracy.


2021 ◽  
Author(s):  
Reza Beiranvand ◽  
Ali Mir ◽  
Reza Talebzadeh

Abstract In this paper, by using the non-linear effects and also destructive and constructive interferences between waveguides, we have designed and simulated an all-optical full-Subtractor based on two-dimensional photonic crystals. The proposed Subtractor has a very simple structure which is composed of 33×31 silicon rods immersed in air in a square lattice and involves three input ports (bits) and an additional waveguide to exhaust the unwanted light. We imposed some defect rods to control the behavior of the light. The used non-linear material, is a doped glass with 1.4×10− 14 m2/w non-linear refractive index which is very greater than the non-linearity refractive index of silicon, 3.46×10− 20 m2/w. Since the proposed structure is very simple and compact, it can be applicable in optical integrated circuits and optical calculations.


2019 ◽  
Vol 41 (1) ◽  
pp. 51-56 ◽  
Author(s):  
Sandip Swarnakar ◽  
Sapna Rathi ◽  
Santosh Kumar

Abstract The photonic crystals (PhC) play an important role in building all optical logic devices and also recommended as solution for opto-electronic bottleneck in terms of speed and size. This paper put forward a design of XOR gate using Photonic Crystal Ring Resonator (PCRR). The ring resonator is a device which provides output on the basis of coupling of mode fields from a linear waveguide to circular ring. The proposed work is designed using two-dimensional (2D) square lattice photonic crystals within the dimensions of $\left( {37a \times 37a} \right)$ by putting silicon (Si) rods in silica (SiO2). The study of device is carried out using finite-difference-time-domain (FDTD) method and verified using MATLAB.


2012 ◽  
Vol 14 (5) ◽  
pp. 055103 ◽  
Author(s):  
Amir H Baradaran Ghasemi ◽  
Shima Mandegarian ◽  
Hoda Kebriti ◽  
Hamid Latifi

Sign in / Sign up

Export Citation Format

Share Document