scholarly journals Memory-augmented meta-learning on meta-path for fast adaptation cold-start recommendation

2021 ◽  
pp. 1-18
Author(s):  
Tianyuan Li ◽  
Xin Su ◽  
Wei Liu ◽  
Wei Liang ◽  
Meng-Yen Hsieh ◽  
...  
IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 77597-77606 ◽  
Author(s):  
Kun Fu ◽  
Tengfei Zhang ◽  
Yue Zhang ◽  
Menglong Yan ◽  
Zhonghan Chang ◽  
...  

2017 ◽  
Author(s):  
George Velentzas ◽  
Costas Tzafestas ◽  
Mehdi Khamassi

AbstractFast adaptation to changes in the environment requires both natural and artificial agents to be able to dynamically tune an exploration-exploitation trade-off during learning. This trade-off usually determines a fixed proportion of exploitative choices (i.e. choice of the action that subjectively appears as best at a given moment) relative to exploratory choices (i.e. testing other actions that now appear worst but may turn out promising later). The problem of finding an efficient exploration-exploitation trade-off has been well studied both in the Machine Learning and Computational Neuroscience fields. Rather than using a fixed proportion, non-stationary multi-armed bandit methods in the former have proven that principles such as exploring actions that have not been tested for a long time can lead to performance closer to optimal - bounded regret. In parallel, researches in the latter have investigated solutions such as progressively increasing exploitation in response to improvements of performance, transiently increasing exploration in response to drops in average performance, or attributing exploration bonuses specifically to actions associated with high uncertainty in order to gain information when performing these actions. In this work, we first try to bridge some of these different methods from the two research fields by rewriting their decision process with a common formalism. We then show numerical simulations of a hybrid algorithm combining bio-inspired meta-learning, kalman filter and exploration bonuses compared to several state-of-the-art alternatives on a set of non-stationary stochastic multi-armed bandit tasks. While we find that different methods are appropriate in different scenarios, the hybrid algorithm displays a good combination of advantages from different methods and outperforms these methods in the studied scenarios.


Author(s):  
Huimin Sun ◽  
Jiajie Xu ◽  
Kai Zheng ◽  
Pengpeng Zhao ◽  
Pingfu Chao ◽  
...  

Next Point-of-Interest (POI) recommendation is of great value for location-based services. Existing solutions mainly rely on extensive observed data and are brittle to users with few interactions. Unfortunately, the problem of few-shot next POI recommendation has not been well studied yet. In this paper, we propose a novel meta-optimized model MFNP, which can rapidly adapt to users with few check-in records. Towards the cold-start problem, it seamlessly integrates carefully designed user-specific and region-specific tasks in meta-learning, such that region-aware user preferences can be captured via a rational fusion of region-independent personal preferences and region-dependent crowd preferences. In modelling region-dependent crowd preferences, a cluster-based adaptive network is adopted to capture shared preferences from similar users for knowledge transfer. Experimental results on two real-world datasets show that our model outperforms the state-of-the-art methods on next POI recommendation for cold-start users.


2021 ◽  
Vol 13 (14) ◽  
pp. 2776
Author(s):  
Yong Li ◽  
Zhenfeng Shao ◽  
Xiao Huang ◽  
Bowen Cai ◽  
Song Peng

The performance of deep learning is heavily influenced by the size of the learning samples, whose labeling process is time consuming and laborious. Deep learning algorithms typically assume that the training and prediction data are independent and uniformly distributed, which is rarely the case given the attributes and properties of different data sources. In remote sensing images, representations of urban land surfaces can vary across regions and by season, demanding rapid generalization of these surfaces in remote sensing data. In this study, we propose Meta-FSEO, a novel model for improving the performance of few-shot remote sensing scene classification in varying urban scenes. The proposed Meta-FSEO model deploys self-supervised embedding optimization for adaptive generalization in new tasks such as classifying features in new urban regions that have never been encountered during the training phase, thus balancing the requirements for feature classification tasks between multiple images collected at different times and places. We also created a loss function by weighting the contrast losses and cross-entropy losses. The proposed Meta-FSEO demonstrates a great generalization capability in remote sensing scene classification among different cities. In a five-way one-shot classification experiment with the Sentinel-1/2 Multi-Spectral (SEN12MS) dataset, the accuracy reached 63.08%. In a five-way five-shot experiment on the same dataset, the accuracy reached 74.29%. These results indicated that the proposed Meta-FSEO model outperformed both the transfer learning-based algorithm and two popular meta-learning-based methods, i.e., MAML and Meta-SGD.


Author(s):  
Seobin Park ◽  
Jinsu Yoo ◽  
Donghyeon Cho ◽  
Jiwon Kim ◽  
Tae Hyun Kim

Sign in / Sign up

Export Citation Format

Share Document