scholarly journals MFNP: A Meta-optimized Model for Few-shot Next POI Recommendation

Author(s):  
Huimin Sun ◽  
Jiajie Xu ◽  
Kai Zheng ◽  
Pengpeng Zhao ◽  
Pingfu Chao ◽  
...  

Next Point-of-Interest (POI) recommendation is of great value for location-based services. Existing solutions mainly rely on extensive observed data and are brittle to users with few interactions. Unfortunately, the problem of few-shot next POI recommendation has not been well studied yet. In this paper, we propose a novel meta-optimized model MFNP, which can rapidly adapt to users with few check-in records. Towards the cold-start problem, it seamlessly integrates carefully designed user-specific and region-specific tasks in meta-learning, such that region-aware user preferences can be captured via a rational fusion of region-independent personal preferences and region-dependent crowd preferences. In modelling region-dependent crowd preferences, a cluster-based adaptive network is adopted to capture shared preferences from similar users for knowledge transfer. Experimental results on two real-world datasets show that our model outperforms the state-of-the-art methods on next POI recommendation for cold-start users.

Author(s):  
Kangzhi Zhao ◽  
Yong Zhang ◽  
Hongzhi Yin ◽  
Jin Wang ◽  
Kai Zheng ◽  
...  

Next Point-of-Interest (POI) recommendation plays an important role in location-based services. State-of-the-art methods learn the POI-level sequential patterns in the user's check-in sequence but ignore the subsequence patterns that often represent the socio-economic activities or coherence of preference of the users. However, it is challenging to integrate the semantic subsequences due to the difficulty to predefine the granularity of the complex but meaningful subsequences. In this paper, we propose Adaptive Sequence Partitioner with Power-law Attention (ASPPA) to automatically identify each semantic subsequence of POIs and discover their sequential patterns. Our model adopts a state-based stacked recurrent neural network to hierarchically learn the latent structures of the user's check-in sequence. We also design a power-law attention mechanism to integrate the domain knowledge in spatial and temporal contexts. Extensive experiments on two real-world datasets demonstrate the effectiveness of our model.


2020 ◽  
Vol 34 (01) ◽  
pp. 214-221 ◽  
Author(s):  
Ke Sun ◽  
Tieyun Qian ◽  
Tong Chen ◽  
Yile Liang ◽  
Quoc Viet Hung Nguyen ◽  
...  

Point-of-Interest (POI) recommendation has been a trending research topic as it generates personalized suggestions on facilities for users from a large number of candidate venues. Since users' check-in records can be viewed as a long sequence, methods based on recurrent neural networks (RNNs) have recently shown promising applicability for this task. However, existing RNN-based methods either neglect users' long-term preferences or overlook the geographical relations among recently visited POIs when modeling users' short-term preferences, thus making the recommendation results unreliable. To address the above limitations, we propose a novel method named Long- and Short-Term Preference Modeling (LSTPM) for next-POI recommendation. In particular, the proposed model consists of a nonlocal network for long-term preference modeling and a geo-dilated RNN for short-term preference learning. Extensive experiments on two real-world datasets demonstrate that our model yields significant improvements over the state-of-the-art methods.


2020 ◽  
Vol 5 (4) ◽  
pp. 433-447
Author(s):  
Shiwen Wu ◽  
Yuanxing Zhang ◽  
Chengliang Gao ◽  
Kaigui Bian ◽  
Bin Cui

Abstract The advances of mobile equipment and localization techniques put forward the accuracy of the location-based service (LBS) in mobile networks. One core issue for the industry to exploit the economic interest of the LBSs is to make appropriate point-of-interest (POI) recommendation based on users’ interests. Today, the LBS applications expect the recommender systems to recommend the accurate next POI in an anonymous manner, without inquiring users’ attributes or knowing the detailed features of the vast number of POIs. To cope with the challenge, we propose a novel attentive model to recommend appropriate new POIs for users, namely Geographical Attentive Recommendation via Graph (GARG), which takes full advantage of the collaborative, sequential and content-aware information. Unlike previous strategies that equally treat POIs in the sequence or manually define the relationships between POIs, GARG adaptively differentiates the relevance of POIs in the sequence to the prediction, and automatically identifies the POI-wise correlation. Extensive experiments on three real-world datasets demonstrate the effectiveness of GARG and reveal a significant improvement by GARG on the precision, recall and mAP metrics, compared to several state-of-the-art baseline methods.


Author(s):  
Yang Li ◽  
Tong Chen ◽  
Yadan Luo ◽  
Hongzhi Yin ◽  
Zi Huang

Being an indispensable component in location-based social networks, next point-of-interest (POI) recommendation recommends users unexplored POIs based on their recent visiting histories. However, existing work mainly models check-in data as isolated POI sequences, neglecting the crucial collaborative signals from cross-sequence check-in information. Furthermore, the sparse POI-POI transitions restrict the ability of a model to learn effective sequential patterns for recommendation. In this paper, we propose Sequence-to-Graph (Seq2Graph) augmentation for each POI sequence, allowing collaborative signals to be propagated from correlated POIs belonging to other sequences. We then devise a novel Sequence-to-Graph POI Recommender (SGRec), which jointly learns POI embeddings and infers a user's temporal preferences from the graph-augmented POI sequence. To overcome the sparsity of POI-level interactions, we further infuse category-awareness into SGRec with a multi-task learning scheme that captures the denser category-wise transitions. As such, SGRec makes full use of the collaborative signals for learning expressive POI representations, and also comprehensively uncovers multi-level sequential patterns for user preference modelling. Extensive experiments on two real-world datasets demonstrate the superiority of SGRec against state-of-the-art methods in next POI recommendation.


2020 ◽  
Vol 34 (04) ◽  
pp. 6127-6136
Author(s):  
Chao Wang ◽  
Hengshu Zhu ◽  
Chen Zhu ◽  
Chuan Qin ◽  
Hui Xiong

The recent development of online recommender systems has a focus on collaborative ranking from implicit feedback, such as user clicks and purchases. Different from explicit ratings, which reflect graded user preferences, the implicit feedback only generates positive and unobserved labels. While considerable efforts have been made in this direction, the well-known pairwise and listwise approaches have still been limited by various challenges. Specifically, for the pairwise approaches, the assumption of independent pairwise preference is not always held in practice. Also, the listwise approaches cannot efficiently accommodate “ties” due to the precondition of the entire list permutation. To this end, in this paper, we propose a novel setwise Bayesian approach for collaborative ranking, namely SetRank, to inherently accommodate the characteristics of implicit feedback in recommender system. Specifically, SetRank aims at maximizing the posterior probability of novel setwise preference comparisons and can be implemented with matrix factorization and neural networks. Meanwhile, we also present the theoretical analysis of SetRank to show that the bound of excess risk can be proportional to √M/N, where M and N are the numbers of items and users, respectively. Finally, extensive experiments on four real-world datasets clearly validate the superiority of SetRank compared with various state-of-the-art baselines.


Author(s):  
Sharon Moses J. ◽  
Dhinesh Babu L.D.

Most recommender systems are based on the familiar collaborative filtering algorithm to suggest items. Quite often, collaborative filtering algorithm fails in generating recommendations due to the lack of adequate user information resulting in new user cold start problem. The cold start problem is one among the prevailing issue in recommendation system where the system fails to render recommendations. To overcome the new user cold start issue, demographical information of the user is utilised as the user information source. Among the demographical information, the impact of the user gender is less explored when compared with other information like age, profession, region, etc. In this work, a genetic algorithm-influenced gender-based top-n recommender algorithm is proposed to address the new user cold start problem. The algorithm utilises the evolution concepts of the genetic algorithm to render top-n recommendations to a new user. The evaluation of the proposed algorithm using real world datasets proved that the algorithm has a better efficiency than the state of art approaches.


2019 ◽  
Vol 8 (8) ◽  
pp. 355 ◽  
Author(s):  
Chunyang Liu ◽  
Jiping Liu ◽  
Jian Wang ◽  
Shenghua Xu ◽  
Houzeng Han ◽  
...  

Point-of-interest (POI) recommendation is one of the fundamental tasks for location-based social networks (LBSNs). Some existing methods are mostly based on collaborative filtering (CF), Markov chain (MC) and recurrent neural network (RNN). However, it is difficult to capture dynamic user’s preferences using CF based methods. MC based methods suffer from strong independence assumptions. RNN based methods are still in the early stage of incorporating spatiotemporal context information, and the user’s main behavioral intention in the current sequence is not emphasized. To solve these problems, we proposed an attention-based spatiotemporal gated recurrent unit (ATST-GRU) network model for POI recommendation in this paper. We first designed a novel variant of GRU, which acquired the user’s sequential preference and spatiotemporal preference by feeding the continuous geographical distance and time interval information into the GRU network in each time step. Then, we integrated an attention model into our network, which is a personalized process and can capture the user’s main behavioral intention in the user’s check-in history. Moreover, we conducted an extensive performance evaluation on two real-world datasets: Foursquare and Gowalla. The experimental results demonstrated that the proposed ATST-GRU network outperforms the existing state-of-the-art POI recommendation methods significantly regarding two commonly-used evaluation metrics.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Chunyang Liu ◽  
Chao Liu ◽  
Haiqiang Xin ◽  
Jian Wang ◽  
Jiping Liu ◽  
...  

Point-of-interest (POI) recommendation is a valuable service to help users discover attractive locations in location-based social networks (LBSNs). It focuses on capturing users’ movement patterns and location preferences by using massive historical check-in data. In the past decade, matrix factorization has become a mature and widely used technology in POI recommendation. However, the inner product of latent vectors adopted in matrix factorization methods does not satisfy the triangle inequality property, which may limit the expressiveness and lead to suboptimal solutions. Besides, the extreme sparsity of check-in data makes it challenging to capture users’ movement preferences accurately. In this paper, we propose a joint geosequential preference and distance metric factorization framework, called GeoSeDMF, for POI recommendation. First, we introduce a distance metric factorization method that is capable of learning users’ personalized preferences from a position and distance perspective in the metric space. Specifically, we convert the user-POI interaction matrix into a distance matrix and factorize it into user and POI dense embeddings. Additionally, we measure users’ personalized preference for the POI by using the Euclidean distance metric instead of the inner product. Then, we model the users’ geospatial preference by applying a geographic weight coefficient and model the users’ sequential preference by using the Euclidean distance of continuous check-in locations. Moreover, a pointwise loss strategy and AdaGrad algorithm are adopted to optimize the positions and relationships of users and POIs in a metric space. Finally, experimental results on three large-scale real-world datasets demonstrate the effectiveness and superiority of the proposed method.


Author(s):  
Monishkanna Barathan ◽  
Ershad Sharifahmadian

Due to the increase in amount of available information, finding places and planning of the activities to be done during a tour can be strenuous. Tourists are looking for information about a place in which they have not been before, which worsen the selection of places that fit better with user’s preferences. Recommendation systems have been fundamentally applicable in tourism, suggest suitable places, and effectively prune large information from different locations, so tourists are directed toward those places where are matched with their needs and preferences. Several techniques have been studied for point-of-interest (POI) recommendation, including content-based which builds based on user preferences, collaborative filtering which exploits the behavior of other users, and different places, knowledge-based method, and several other techniques. These methods are vulnerable to some limitations and shortcomings related to recommendation environment such as scalability, sparsity, first-rater or gray sheep problems. This paper tries to identify the drawbacks that prevent wide spread use of these methodologies in recommendation. To improve performance of recommendation systems, these methods are combined to form hybrid recommenders. This paper proposes a novel hybrid recommender system which suggests tourism destinations to a user with minimal user interaction. Furthermore, we use sentiment analysis of user’s comments to enhance the efficiency of the proposed system.


Sign in / Sign up

Export Citation Format

Share Document