Chemical speciation of amino acids in electrolyte solutions containing major components of natural fluids

1995 ◽  
Vol 7 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Concetta De Stefano ◽  
Claudia Foti ◽  
Antonio Gianguzza ◽  
Carmelo Rigano ◽  
Silvio Sammartano
2021 ◽  
Vol 7 (11) ◽  
pp. 11-21

Abstract. Research relevance: low molecular weight supramolecular hydrogels are unique objects that can solve many pressing problems in medicine, food industry and other sectors of the national economy. Research objectives: in recent past, it was discovered that low-concentration solutions of L-cysteine and silver nitrate (CSN) can form, when electrolyte solutions are added to hydrogels. We were faced with the task of obtaining hydrogels from dilute solutions of glycyram (GC) by adding CSN, since GC, due to its poor solubility, has low bioavailability. Materials and research methods: using the method of isomolar series, a comparative study of the formation of hydrogels by dilute GC solutions with the addition of CSN and GCP was carried out. It has been found that most durable hydrogels were obtained using CSN. Thus, GC hydrogels were obtained at a concentration of 10−3 M after adding CSN and GCP, which have a supramolecular character and combine the properties of GC, amino acids, and silver ions. Research results: glycyram hydrogels were obtained at its concentration equal to 10−3 M by mixing it with silver amino acids L-cysteine (CSN) and L-glutamic acid (GCP) solutions in same low concentrations. Conclusions: hydrogels with glycyram form silver solutions of those amino acids that are capable of giving frame structures at a ratio of amino acid: silver nitrate of 1.25.


2008 ◽  
Vol 86 (12) ◽  
pp. 1126-1137 ◽  
Author(s):  
Rahmat Sadeghi

The extended NRTL and Wilson local composition models for amino acid solutions have been modified for the representation of the phase equilibrium behavior of aqueous amino acid – electrolyte solutions by considering cells with random composition for the reference Gibbs energies or enthalpies of local composition cells with a central amino acid molecule and also with a central ion. These new local composition models, which have a molecular thermodynamic framework, have been used to model the vapor–liquid and solid–liquid equilibrium behavior of amino acids and small peptides in aqueous solutions as functions of temperature, ionic strength, and amino acid compositions. The utility of the models is demonstrated with a successful representation of the activity coefficients and the solubility of several amino acids in different aqueous solutions.Key words: amino acid, NRTL, Wilson, activity coefficient, solubility, aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document