scholarly journals Rice growth improvement and grains bio-fortification through lime and zinc application in zinc deficit tropical acid sulphate soils

2016 ◽  
Vol 28 (1-4) ◽  
pp. 152-162 ◽  
Author(s):  
Shahram Mahmoud Soltani ◽  
Mohamed Musa Hanafi ◽  
Abdol Wahid Samsuri ◽  
Sharifah Kharidah Seyed Muhammed ◽  
Mohammad Abdol Hakim
2021 ◽  
Vol 6 (3) ◽  
pp. 163
Author(s):  
Izhar Khairullah ◽  
Wahida Annisa ◽  
Herman Subagio ◽  
Hendri Sosiawan

Swampland plays a critical function in agriculture, specifically in growing rice production. The study aimed to determine the effects of cropping systems and varieties on the rice growth and yield in acid sulfate soil of tidal swampland. The experiment was conducted in a potential acid sulphate soils in Kapuas Regency, Central Kalimantan Province. The experiment was arranged in a split plot design with three replications. The main plot consisted of three HYV’s of rice, namely Inpara 8, Inpari 32, and Margasari. The subplot consisted of five cropping systems, namely, Jarwo 2:1A, Jarwo 2:1B, Jarwo 2:1C, Hazton, and Tegel.  The plot size was 4 m x 5 m. The variables observed included initial soil properties, plant growth, and yield components. The jajar legowo cropping system in this study was not able to increase rice yields in acid sulphate soil.  There was an interaction effect of cropping systems and varieties on the plant height and number of tillers at vegetative phase. At generative and pre-harvest phases, there was significant single effect of variety and cropping system in the planting height and number of tillers, respectively. Both cropping system and variety significantly affected the number of panicles per hill, while panicle length, grain per panicle and grain yield were only affected by variety.  There was no significant effect of both factors on the number of filled grains per panicle.  Inpara 8 variety achieved the highest grain yield, which was 6.78 ton.ha-1 or equivalent to 4.34 ton.ha-1 of 14 % water content. 


2015 ◽  
Vol 7 (4) ◽  
pp. 2903-2926
Author(s):  
A. A. Elisa ◽  
S. Ninomiya ◽  
J. Shamshuddin ◽  
I. Roslan

Abstract. A study was conducted to alleviate Al toxicity of an acid sulphate soils collected from paddy cultivation area in Kedah, Peninsular Malaysia. For this purpose, the collected acid sulphate soils were treated with calcium silicate. The treated soils were incubated for 120 days in submerged condition in a glasshouse. Subsamples were collected every 30 days throughout the incubation period. Soil pH and exchangeable Al showed positive effect; soil pH increased from 2.9 to 3.5, meanwhile exchangeable Al was reduced from 4.26 to 0.82 cmolc kg−1, which was well below the critical Al toxicity level for rice growth of 2 cmolc kg−1. It was noted that the dissolution of calcium silicate (CaSiO3) supplied substantial amount of Ca2+ and H4SiO42− ions into the soil, noted with increment in Si (silicate) content from 21.21 to 40 mg kg−1 at day 30 and reduction of exchangeable Al at day 90 from 4.26 to below 2 cmolc kg−1. During the first 60 days of incubation, Si content was positively correlated with soil pH, while the exchangeable Al was negatively correlated with Si content. It is believed that the silicate anions released by calcium silicate were active in neutralizing H+ ions that governs the high acidity (pH 2.90) of the acid sulphate soils. This scenario shows positive effect of calcium silicate to reduce soil acidity, therefore creates a favourable soil condition for good rice growth during its vegetative phase (30 days). Thus, application of calcium silicate to alleviate Al toxicity of acid sulphate soils for rice cultivation is a good soil amendment.


1996 ◽  
Author(s):  
P. Vasquez ◽  
J. Urich ◽  
V. Gonzalez ◽  
P. Silva ◽  
A. Rodriguez

2000 ◽  
Vol 41 (7-12) ◽  
pp. 319-326 ◽  
Author(s):  
F.J Cook ◽  
W Hicks ◽  
E.A Gardner ◽  
G.D Carlin ◽  
D.W Froggatt

Author(s):  
A. Krishna Chaitanya ◽  
Shrikant Badole ◽  
Arbind Kumar Gupta ◽  
Biplab Pal

2008 ◽  
Vol 14 (1) ◽  
pp. 83 ◽  
Author(s):  
K. LAX

Results from the biogeochemical mapping (roots of aquatic plants and Fontinalis antipyretica) conducted by the Geological Survey of Sweden (SGU) reflects the metal load of surface waters draining acid sulphate (AS) soils in Sweden. In this study, results from the biogeochemical, soil geochemical and Quaternary mapping programmes at SGU were used to investigate the impact of fine-grained deposits hosting AS soils on stream water trace element chemistry in two separate areas. In the area around Lake Mälaren, postglacial sediments contain the highest levels of most trace elements studied. Owing to the low pH of AS soils and subsequent leaching, levels of nickel (Ni), cobalt (Co), copper (Cu), sulphur (S), yttrium (Y), uranium (U), tungsten (W), and molybdenum (Mo) were significantly elevated in aquatic roots. Levels were lower in the Skellefteå area, which may be explained by lower concentrations in source deposits. Concentrations of arsenic (As) and lead (Pb) were normal or impoverished in biogeochemical samples from postglacial, finegrained sediment areas. Maps based on ratios (Ni:Pb or Y:Pb) in biogeochemical samples can, together with results from Quaternary mapping, be used to predict areas with AS soils in Sweden.;


Sign in / Sign up

Export Citation Format

Share Document