Intrachromosomal localization of breakpoints induced by the restriction endonucleases Alu I and Bam HI in Chinese hamster ovary cells treated in S phase of the cell cycle

1996 ◽  
Vol 69 (4) ◽  
pp. 447-457 ◽  
Author(s):  
G. A. FOLLE
1981 ◽  
Vol 1 (7) ◽  
pp. 594-599 ◽  
Author(s):  
J J Harada ◽  
D R Morris

We have previously shown that Chinese hamster ovary cells made polyamine deficient by treatment with alpha-methylornithine, an inhibitor of ornithine decarboxylase, grow exponentially in culture at low densities at one-half the rate observed in untreated (control) cultures. In this study, the cell cycle of polyamine-limited cells was examined by using thymidine autoradiography, mitotic index analysis, and fraction labeled mitoses analysis. We found that the longer doubling time of inhibitor-treated cultures was a consequence of increases in the lengths of the G1 and S phases. The expansion of the S phase was proportional to the increase in doubling time (twofold), whereas the G1 phase was lengthened by slightly more than a factor of 2. The lengths of the G2 and M phases were essentially unchanged. Putrescine stimulated the growth of inhibitor-treated cultures and restored the cell cycle parameters to those of untreated cells.


1987 ◽  
Vol 65 (3) ◽  
pp. 219-229 ◽  
Author(s):  
J. Tim Westwood ◽  
Robert B. Church ◽  
Emile B. Wagenaar

The protein synthesis patterns at various stages of the cell cycle of Chinese hamster ovary cells were examined by labelling cells with [35S]methionine and then separating the proteins by isoelectric focussing and two-dimensional, nonequilibrium pH gradient gel electrophoresis. We have observed a number of proteins which display quantitative differences in synthesis at specific cell cycle stages and of these the α- and β-tubulins have been identified. A few proteins appear to be uniquely synthesized at specific times during the cell cycle. These include the histones and a modified version of them, which are synthesized only in S phase, and a pair of 21 kilodalton (kDa), pI 5.5 proteins, which appear only in late G2 and mitosis. We have also identified a 58-kDa, pI 7.5 protein which is present at all cell cycle stages except during late G2. This protein appears to have the same temporal properties as a 57-kDa protein called "cyclin" originally described in sea urchin embryos.


1981 ◽  
Vol 1 (7) ◽  
pp. 594-599
Author(s):  
J J Harada ◽  
D R Morris

We have previously shown that Chinese hamster ovary cells made polyamine deficient by treatment with alpha-methylornithine, an inhibitor of ornithine decarboxylase, grow exponentially in culture at low densities at one-half the rate observed in untreated (control) cultures. In this study, the cell cycle of polyamine-limited cells was examined by using thymidine autoradiography, mitotic index analysis, and fraction labeled mitoses analysis. We found that the longer doubling time of inhibitor-treated cultures was a consequence of increases in the lengths of the G1 and S phases. The expansion of the S phase was proportional to the increase in doubling time (twofold), whereas the G1 phase was lengthened by slightly more than a factor of 2. The lengths of the G2 and M phases were essentially unchanged. Putrescine stimulated the growth of inhibitor-treated cultures and restored the cell cycle parameters to those of untreated cells.


1977 ◽  
Vol 73 (1) ◽  
pp. 200-205 ◽  
Author(s):  
A S Weissfeld ◽  
H Rouse

When exponentially growing CHO cells were deprived of arginine (Arg), cell multiplication ceased after 12 h, but initiation of DNA synthesis continued: after 48 h of starvation with continuous [3H]thymidine exposure, 85% of the population had incorporated label, as detected autoradiographically. Consideration of the distribution of exponential cells in the various cell cycle phases leads to a calculation that most cells in G1 at the time that Arg was removed, as well as those in S, engaged in some DNA synthesis during starvation. In contrast, isoleucine (Ile)-starved cells did not initiate DNA synthesis, as has been reported by others. Experiments with cells synchronized by mitotic selection confirmed this difference in Arg- and Ile- deprived behavior, but also showed that cells which underwent the mitosis leads to G1 transition during Arg starvation remained arrested in G1 (G0?). The results suggest that Arg-deprived cells continue to maintain some proliferative function(s) while Ile-deprived cells do not.


1997 ◽  
Vol 148 (3) ◽  
pp. 260 ◽  
Author(s):  
Joseph A. D' Anna ◽  
Joseph G. Valdez ◽  
Robert C. Habbersett ◽  
Harry A. Crissman

2004 ◽  
Vol 149 (2-3) ◽  
pp. 125-136 ◽  
Author(s):  
Pei-Ming Yang ◽  
Shu-Jun Chiu ◽  
Kwei-Ann Lin ◽  
Lih-Yuan Lin

Sign in / Sign up

Export Citation Format

Share Document