Electrochemical treatment of rice grain-based distillery effluent: chemical oxygen demand and colour removal

2013 ◽  
Vol 35 (2) ◽  
pp. 242-249 ◽  
Author(s):  
Abhinesh Kumar Prajapati ◽  
Parmesh Kumar Chaudhari
2013 ◽  
Vol 53 (8) ◽  
pp. 2204-2214 ◽  
Author(s):  
Abhinesh Kumar Prajapati ◽  
Rumi Choudhary ◽  
Kumar Verma ◽  
Parmesh Kumar Chaudhari ◽  
Amit Dubey

2018 ◽  
Vol 2 ◽  
pp. 50 ◽  
Author(s):  
Brian T. Hawkins ◽  
Tate W. Rogers ◽  
Christopher J. Davey ◽  
Mikayla H. Stoner ◽  
Ewan J. McAdam ◽  
...  

Onsite reuse of blackwater requires removal of considerable amounts of suspended solids and organic material in addition to inactivation of pathogens. Previously, we showed that electrochemical treatment could be used for effective pathogen inactivation in blackwater, but was inadequate to remove solids and organics to emerging industry standards. Further, we found that as solids and organics accumulate with repeated recycling, electrochemical treatment becomes less energetically sustainable. Here, we describe a pilot study in which concentrated blackwater is pretreated with ultrafiltration and granular activated carbon prior to electrochemical disinfection, and show that this combination of treatments removes 75-99% of chemical oxygen demand, 92-100% of total suspended solids, and improves the energy efficiency of electrochemical blackwater treatment by an order of magnitude.


2021 ◽  
Vol 2 (1) ◽  
pp. 8-17
Author(s):  
Sukanya Pujari ◽  
Manoj Wagh ◽  
Shila Dare

In waste treatment and water management issues, electrocoagulation (EC) is the most cost-effective and environmentally friendly option. In the study, EC treatment of distillery spent wash was carried out using new electrodes packed with aluminium foil scraps. These metal scraps were packed in a mesh to function as anode and cathode electrodes. Electrochemical treatment was carried out for 150 minutes, and samples were analysed regularly to determine the colour and chemical oxygen demand (COD). The impact of operating parameters such as pH, applied current, electrolysis time, agitation speed, and electrode distance on colour and COD removal was investigated. The EC processes were carried out in monopolar parallel (MP-P) and monopolar series (MP-S). The MP-S connection measured the potential difference between the amplified pair of electrodes, whereas the output signals in the MP-P connection were formed by several input electrodes, resulting in a high removal rate. The results indicated that the MP-P relationships enhance the COD removal rate by 4.16 to 8.06 %. An optimum chemical oxygen demand degradation is 77.29 % at pH 3, and decolourisation is 76.55 % at pH 8.3. TDS is reduced to a maximum of 58.32 %, while sulfate and chloride are reduced to 64.72 and 20.44 %, respectively.


2019 ◽  
Vol 2 ◽  
pp. 50 ◽  
Author(s):  
Brian T. Hawkins ◽  
Tate W. Rogers ◽  
Christopher J. Davey ◽  
Mikayla H. Stoner ◽  
Ewan J. McAdam ◽  
...  

Onsite reuse of blackwater requires removal of considerable amounts of suspended solids and organic material in addition to inactivation of pathogens. Previously, we showed that electrochemical treatment could be used for effective pathogen inactivation in blackwater, but was inadequate to remove solids and organics to emerging industry standards. Further, we found that as solids and organics accumulate with repeated recycling, electrochemical treatment becomes less energetically sustainable. Here, we describe a pilot study in which concentrated blackwater is pretreated with ultrafiltration and granular activated carbon prior to electrochemical disinfection, and show that this combination of treatments removes 75-99% of chemical oxygen demand, 92-100% of total suspended solids, and improves the energy efficiency of electrochemical blackwater treatment by an order of magnitude.


2012 ◽  
Vol 9 (2) ◽  
pp. 705-715 ◽  
Author(s):  
Ashok V. Borhade ◽  
Dipak R. Tope ◽  
Bhagwat K. Uphade

We report here the synthesis of visible light sensitive PbO and Ni doped PbO nanoparticles by hydrothermal method and characterized by UV-DRS, photoluminescence spectroscopy (PL), FTIR, X-ray diffraction (XRD), SEM, EDAX and TGA. Further an efficient approach has been developed for degradation of methyl blue (MB) in aqueous medium. The photodegradation of dye was monitored as a function of dye concentration, pH and catalyst amount has been determined. The reduction in the chemical oxygen demand (COD) revealed the mineralization of dye along with colour removal.


2014 ◽  
Vol 13 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Ghasem Najafpour Darzi ◽  
Reza Katal ◽  
Hossein Zare ◽  
Seyed Omid Rastegar ◽  
Poorya Mavaddat

Sign in / Sign up

Export Citation Format

Share Document