Applied Research and Smart Technology (ARSTech)
Latest Publications


TOTAL DOCUMENTS

14
(FIVE YEARS 14)

H-INDEX

0
(FIVE YEARS 0)

Published By Universitas Muhammadiyah Surakarta

2722-9645, 2722-9637

2021 ◽  
Vol 2 (1) ◽  
pp. 18-26
Author(s):  
Nor Syamimi ◽  
Shuhaida Yahud

Surface thermistors are being currently used in patient monitoring, including temperature monitoring among neonates. However, these thermistors are reported as being mechanically rigid. This review article aims to provide researchers with a guide to better design a flexible neonatal temperature monitoring sensor. A literature search was conducted to obtain available literature on temperature sensors with specific attention to designing flexible temperature sensors. The achievement of a flexible type thermistor for neonates requires a basic understanding of the thermistor. Also, the conducting polymer material being used and the rationale for their placement. The updated technology in thermistors should be made flexible for the ease of neonates during monitoring. Careful considerations for the design and conduct of flexible temperature sensor research as outlined in this review would help to enhance the quality and comparability of future research studies. Considerations for efficient neonatal temperature monitoring and protection include accuracy, sensor's size, weight, material, and sensor placement. Flexible sensors could be the alternative to conventional bulky and stiff temperature sensors.


2021 ◽  
Vol 2 (1) ◽  
pp. 27-33
Author(s):  
Salah Aguib ◽  
Salah Roubah ◽  
Mohamed Hadji ◽  
Lallia Kobzili ◽  
Chikh Noureddine ◽  
...  

A magnetorheological is a new generation of smart materials in active mechanical vibration and shock control applications. This article is based on a comparative experimental study of the dynamic properties of magnetorheological elastomers (MRE) and magnetorheological fluids (MRF), whose damping and stiffness are controlled simultaneously by applying magnetic field intensity. The dynamic visco-analyser and rheometer were used to test the behaviour of MRE and MRF. The response of both materials depends on the amplitude due to shear strain. The experimental results clearly show the difference between the dynamic properties of MRE and MRF. More specifically, MFRs have high damping with low stiffness; on the other hand, the MRE has average damping with outstanding rigidity. These results help designers achieve more efficient and reliable structures in various engineering fields, such as buildings and mechanical applications.


2021 ◽  
Vol 2 (1) ◽  
pp. 8-17
Author(s):  
Sukanya Pujari ◽  
Manoj Wagh ◽  
Shila Dare

In waste treatment and water management issues, electrocoagulation (EC) is the most cost-effective and environmentally friendly option. In the study, EC treatment of distillery spent wash was carried out using new electrodes packed with aluminium foil scraps. These metal scraps were packed in a mesh to function as anode and cathode electrodes. Electrochemical treatment was carried out for 150 minutes, and samples were analysed regularly to determine the colour and chemical oxygen demand (COD). The impact of operating parameters such as pH, applied current, electrolysis time, agitation speed, and electrode distance on colour and COD removal was investigated. The EC processes were carried out in monopolar parallel (MP-P) and monopolar series (MP-S). The MP-S connection measured the potential difference between the amplified pair of electrodes, whereas the output signals in the MP-P connection were formed by several input electrodes, resulting in a high removal rate. The results indicated that the MP-P relationships enhance the COD removal rate by 4.16 to 8.06 %. An optimum chemical oxygen demand degradation is 77.29 % at pH 3, and decolourisation is 76.55 % at pH 8.3. TDS is reduced to a maximum of 58.32 %, while sulfate and chloride are reduced to 64.72 and 20.44 %, respectively.


2021 ◽  
Vol 2 (1) ◽  
pp. 1-7
Author(s):  
Mohammad Abderrahman

Perspex has been known for a long time as a polymeric material, and it has been used for a large number of electrical and non-electrical applications. The present work was carried out to investigates the ageing mechanism of perspex material under a high electric field. The electrical treeing phenomenon was studied using perspex samples with electrodes of a pin-to-plane configuration. The growth of an electrical tree in Perspex was measured and analysed with the aid of an advanced microscope, equipped with a high-resolution camera and connected to a personal computer. Several distinct stages were assigned to characterise the electrical tree development. The area occupied by the electrical tree channels was calculated using equal-area squares. This approach was employed to measure the growth rate of electrical trees under dry and wet conditions. The tree construction, shape and growth speed were studied and analysed to distinguish between treeing phenomenon under wet and dry conditions of fabricated perspex specimens. The absorption of water has increased the tree growth inside the samples, and ions with water have accelerated the breakdown process. The findings of this study are essential to improve the performance of perspex material, which is widely used in a variety of applications for both energy and non-energy purposes.


2020 ◽  
Vol 1 (2) ◽  
pp. 43-55
Author(s):  
Mohd Yuhazril bin Yaakob ◽  
Mohamad Pazlin bin Saion ◽  
Mohd Amirhafizan bin Husin

Mechanical characteristics of the laminated composite crafted from fabric type reinforcement perhaps inspired via the weaving method and reinforcement agent's usage due to each layer's constructional parameter. As a result, research on the arrangement configuration between bio composite and synthetic fibre for the material shape was proposed to enhance the composite structure's biodiversity and physical characteristics. Substitute for natural fibre in synthetic fibre composite works has shown the excessive capacity to be explored scientifically. The evaluation focused on the concept and essential of bio composite and the synthetic composite fabric positioned over the years from the previous studies of the preliminary researches. The sorts and features of matrix and fibre filler reinforcement materials in composites were also discussed. This assessment's main findings indicated that the composite centre relied on the weave styles and inter-ply and interplay lamination roles. Therefore, the state-of-the-art intraply for synthetic fibre and bio composite fibre in a composite shape was anticipated performing higher in mechanical energy, particularly within the application of ballistic resistance, besides decreased dependency on artificial fibre. It would ultimately suggest the excellent weave sample designs in the proper combination shape of natural and synthetic fibres embedded with polymers. The statistical results were compared with the experimental parameters available inside the literature review. The review explains approximately the studies and evolution within the enhancement of characteristic fibres reinforced polymer composites in ballistic resistance use. This paper goes over the body armour's profitable and present advancement materials, structure and development procedures, and related works on upgrading ballistic energy captivation and upgrading the mechanical tenacity for high impact resistance applications.


2020 ◽  
Vol 1 (2) ◽  
pp. 64-70
Author(s):  
Augustus Ibhaze ◽  
Patience Orukpe ◽  
Frederick Edeko

Over the past decades, the demand for high-speed data transmission has grown exponentially, necessitating broadband technology integration to satisfy the emerging data-hungry society. This concern has engendered the proposition of a simplified optical wireless transceiver module using off-the-shelf electronic devices. According to the transistor to transistor logic levels, the transmitter module was made up of a single negative-positive-negative (NPN) transistor operated as a switch to drive an off-the-shelf 12V 5W light-emitting diode (LED). In contrast, the receiver was made up of a photodetector (solar) module for photons detection and back-conversion to electrical signals. The received signal was passed through a four-stage amplification process to remove the ambient noise and retrieve the data signal. The last transceiver module was demonstrated using personal computers. It was observed to perform at different optimum points consistent with exposure to fluorescent light, daytime, and night-time operations consequent upon the induced ambient light interference at data rates constrained by the communication device interface.


2020 ◽  
Vol 1 (2) ◽  
pp. 35-42
Author(s):  
Norsinnira Zainul Azlan ◽  
Mubeenah Titilola Sanni ◽  
Ifrah Shahdad

This paper presents the design and development of a new low-cost pick and place anthropomorphic robotic arm for the disabled and humanoid applications. Anthropomorphic robotic arms are weapons similar in scale, appearance, and functionality to humans, and functionality. The developed robotic arm was simple, lightweight, and has four degrees of freedom (DOF) at the hand, shoulder, and elbow joints. The measurement of the link was made close to the length of the human arm. The anthropomorphic robotic arm was actuated by four DC servo motors and controlled using an Arduino UNO microcontroller board. The voice recognition unit drove the command input for the targeted object. The forward and inverse kinematics of the proposed new robotic arm has been analysed and used to program the low cost anthropomorphic robotic arm prototype to reach the desired position in the pick and place operation. This paper’s contribution is in developing the low cost, light, and straightforward weight anthropomorphic arm that can be easily attached to other applications such as a wheelchair and the kinematic study of the specific robot. The low-cost robotic arm’s capability has been tested, and the experimental results show that it can perform basic pick place tasks for the disabled and humanoid applications.


2020 ◽  
Vol 1 (2) ◽  
pp. 71-82
Author(s):  
Mohd Azri Abd Mutalib ◽  
Norsinnira Zainul Azlan

This paper provides the review and prototype development of mecanum wheels mobile robot (MWMR). Nowadays, there is a high market demand for a wheeled machine or wheeled robot for various applications. The ability to move in any direction without altering even a single wheel makes this type of wheel useful for driving, especially in a narrowed or confined space. Various styles of implementing MWMR are discussed in this paper. The kinematic derivation and dynamic modelling are also presented. Characteristically, mecanum wheels face traditional mobile application issues like jerking and slippage, which contribute to low positioning accuracy and repeatability. Besides, environmental factors like disturbance and uncertainty also contribute to these issues. To eliminate or at least reduce the effect, the control strategies in previous researches have been reviewed and are presented in this paper. Finally, a low-cost prototype of MWMR was developed as an experimental platform for future study.


2020 ◽  
Vol 1 (2) ◽  
pp. 56-63
Author(s):  
Nur Kholis ◽  
Nuryanto Nuryanto ◽  
Arif Mustofa

The reliability of medical devices such as extraction forceps is vital for dental and oral care. Apart from having hygienic properties, the extraction forceps must be strong and resistant to corrosion. This study evaluates the effects of tempering temperature on the hardness and microstructure of a medical device's material made from stainless-steel DIN 4021. In the experiments, a heat treatment process was carried out previously with a temperature of 1,050°C and a holding time of 20 minutes. A quenching process was conducted using a cooling channel that flowed with water at 10-20°C. After the heat treatment, the material was subjected to a tempering process with temperature variations of 200, 400, and 600°C. The research results indicated that the heat treatment process could increase the material's hardness value—the hardness value of the raw material changed from 20 to 48.67 HRC with the heat treatment. The tempering parameters resulted in the highest hardness value of 46.67 HRC at 200°C and the lowest value of 42.33 HRC at 600°C. Microstructure testing using optical microscopy showed that it produced ferrite, pearlite, and martensite structures. In contrast, the result of a microstructure testing using Scanning Electron Microscopy on the surface of the material is that the higher the tempering temperature, the larger the particles' area and dimension.


2020 ◽  
Vol 1 (1) ◽  
pp. 28-34
Author(s):  
Hariningsih Hariningsih ◽  
Sumpena Sumpena ◽  
Heribertus Sukarjo

The research aims to investigate the effect of the cooling medium on the hardness characteristic and microstructure of the 42CrMo4 steel due to hardening treatment at a temperature of 830°C and holding time of 30 minutes. Various oil such as SAE-10W40, SAE-20W50, SAE-40, and used oil was used in the cooling medium. The changes in product size, hardness, and microstructure have been carefully assessed. The results indicated that the viscosity of the coolant medium strongly influenced the cooling rate of the cooling medium, hardness, and microstructure. SAE-10W40 oil and SAE-20W50 oil only needed 2 hours to return within room temperatures before quenching, whereas SAE-40 oil and used oil took 3 hours. The sample size did not change after hardening-quenching. However, there was a residual carbon layer on the sample surfaces. Quenching caused the changes of microstructure from pearlite and ferrite to ultrafine double phase, consisting of martensite and austenite, which were unable to transform during rapid cooling. The highest hardness value was achieved by the treated product, which was quenched in SAE-10W40, which had 54.59 HRC. The high hardness was attributed to the content of 95% martensite. However, used-oil caused in similar hardness as SAE-20W50.


Sign in / Sign up

Export Citation Format

Share Document