Discrete time multi-parameter optimal stopping problems with multiple plays and switching costs

2003 ◽  
Vol 6 (3) ◽  
pp. 253-264 ◽  
Author(s):  
Teruo Tanaka
2011 ◽  
Vol 43 (04) ◽  
pp. 1086-1108
Author(s):  
Andreas Faller ◽  
Ludger Rüschendorf

In this paper we establish an extension of the method of approximating optimal discrete-time stopping problems by related limiting stopping problems for Poisson-type processes. This extension allows us to apply this method to a larger class of examples, such as those arising, for example, from point process convergence results in extreme value theory. Furthermore, we develop new classes of solutions of the differential equations which characterize optimal threshold functions. As a particular application, we give a fairly complete discussion of the approximative optimal stopping behavior of independent and identically distributed sequences with discount and observation costs.


2012 ◽  
Vol 45 (2) ◽  
Author(s):  
Ł. Stettner

AbstractIn the paper we use penalty method to approximate a number of general stopping problems over finite horizon. We consider optimal stopping of discrete time or right continuous stochastic processes, and show that suitable version of Snell’s envelope can by approximated by solutions to penalty equations. Then we study optimal stopping problem for Markov processes on a general Polish space, and again show that the optimal stopping value function can be approximated by a solution to a Markov version of the penalty equation.


2011 ◽  
Vol 43 (4) ◽  
pp. 1086-1108 ◽  
Author(s):  
Andreas Faller ◽  
Ludger Rüschendorf

In this paper we establish an extension of the method of approximating optimal discrete-time stopping problems by related limiting stopping problems for Poisson-type processes. This extension allows us to apply this method to a larger class of examples, such as those arising, for example, from point process convergence results in extreme value theory. Furthermore, we develop new classes of solutions of the differential equations which characterize optimal threshold functions. As a particular application, we give a fairly complete discussion of the approximative optimal stopping behavior of independent and identically distributed sequences with discount and observation costs.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 534
Author(s):  
F. Thomas Bruss

This paper presents two-person games involving optimal stopping. As far as we are aware, the type of problems we study are new. We confine our interest to such games in discrete time. Two players are to chose, with randomised choice-priority, between two games G1 and G2. Each game consists of two parts with well-defined targets. Each part consists of a sequence of random variables which determines when the decisive part of the game will begin. In each game, the horizon is bounded, and if the two parts are not finished within the horizon, the game is lost by definition. Otherwise the decisive part begins, on which each player is entitled to apply their or her strategy to reach the second target. If only one player achieves the two targets, this player is the winner. If both win or both lose, the outcome is seen as “deuce”. We motivate the interest of such problems in the context of real-world problems. A few representative problems are solved in detail. The main objective of this article is to serve as a preliminary manual to guide through possible approaches and to discuss under which circumstances we can obtain solutions, or approximate solutions.


1997 ◽  
Vol 34 (1) ◽  
pp. 66-73 ◽  
Author(s):  
S. E. Graversen ◽  
G. Peškir

The solution is presented to all optimal stopping problems of the form supτE(G(|Β τ |) – cτ), where is standard Brownian motion and the supremum is taken over all stopping times τ for B with finite expectation, while the map G : ℝ+ → ℝ satisfies for some being given and fixed. The optimal stopping time is shown to be the hitting time by the reflecting Brownian motion of the set of all (approximate) maximum points of the map . The method of proof relies upon Wald's identity for Brownian motion and simple real analysis arguments. A simple proof of the Dubins–Jacka–Schwarz–Shepp–Shiryaev (square root of two) maximal inequality for randomly stopped Brownian motion is given as an application.


Sign in / Sign up

Export Citation Format

Share Document