scholarly journals On general optimal stopping problems using penalty method

2012 ◽  
Vol 45 (2) ◽  
Author(s):  
Ł. Stettner

AbstractIn the paper we use penalty method to approximate a number of general stopping problems over finite horizon. We consider optimal stopping of discrete time or right continuous stochastic processes, and show that suitable version of Snell’s envelope can by approximated by solutions to penalty equations. Then we study optimal stopping problem for Markov processes on a general Polish space, and again show that the optimal stopping value function can be approximated by a solution to a Markov version of the penalty equation.

4OR ◽  
2016 ◽  
Vol 15 (3) ◽  
pp. 277-302 ◽  
Author(s):  
Benoîte de Saporta ◽  
François Dufour ◽  
Christophe Nivot

2017 ◽  
Vol 2017 ◽  
pp. 1-10
Author(s):  
Lu Ye

This paper considers the optimal stopping problem for continuous-time Markov processes. We describe the methodology and solve the optimal stopping problem for a broad class of reward functions. Moreover, we illustrate the outcomes by some typical Markov processes including diffusion and Lévy processes with jumps. For each of the processes, the explicit formula for value function and optimal stopping time is derived. Furthermore, we relate the derived optimal rules to some other optimal problems.


2011 ◽  
Vol 2011 ◽  
pp. 1-28 ◽  
Author(s):  
Moustapha Pemy

This paper is concerned with a finite-horizon optimal selling rule problem when the underlying stock price movements are modeled by a Markov switching Lévy process. Assuming that the transaction fee of the selling operation is a function of the underlying stock price, the optimal selling rule can be obtained by solving an optimal stopping problem. The corresponding value function is shown to be the unique viscosity solution to the associated HJB variational inequalities. A numerical example is presented to illustrate the results.


2006 ◽  
Vol 43 (01) ◽  
pp. 102-113
Author(s):  
Albrecht Irle

We consider the optimal stopping problem for g(Z n ), where Z n , n = 1, 2, …, is a homogeneous Markov sequence. An algorithm, called forward improvement iteration, is presented by which an optimal stopping time can be computed. Using an iterative step, this algorithm computes a sequence B 0 ⊇ B 1 ⊇ B 2 ⊇ · · · of subsets of the state space such that the first entrance time into the intersection F of these sets is an optimal stopping time. Various applications are given.


1971 ◽  
Vol 11 (3) ◽  
pp. 529-533
Author(s):  
B. Grigelionis

The abstracts (in two languages) can be found in the pdf file of the article. Original author name(s) and title in Russian and Lithuanian: Б. И. Григелионис. К вопросу о достаточных статистиках для задач об оптимальной остановке случайных процессов B. Grigelionis. Pakankamų statistikų atsitiktinių procesų optimalaus sustabdymo uždaviniams klausimu


2018 ◽  
Vol 64 ◽  
pp. 93-110 ◽  
Author(s):  
Roxana Dumitrescu ◽  
Marie-Claire Quenez ◽  
Agnès Sulem

We study pricing and hedging for American options in an imperfect market model with default, where the imperfections are taken into account via the nonlinearity of the wealth dynamics. The payoff is given by an RCLL adapted process (ξt). We define the seller's price of the American option as the minimum of the initial capitals which allow the seller to build up a superhedging portfolio. We prove that this price coincides with the value function of an optimal stopping problem with a nonlinear expectation 𝓔g (induced by a BSDE), which corresponds to the solution of a nonlinear reflected BSDE with obstacle (ξt). Moreover, we show the existence of a superhedging portfolio strategy. We then consider the buyer's price of the American option, which is defined as the supremum of the initial prices which allow the buyer to select an exercise time τ and a portfolio strategy φ so that he/she is superhedged. We show that the buyer's price is equal to the value function of an optimal stopping problem with a nonlinear expectation, and that it can be characterized via the solution of a reflected BSDE with obstacle (ξt). Under the additional assumption of left upper semicontinuity along stopping times of (ξt), we show the existence of a super-hedge (τ, φ) for the buyer.


Sign in / Sign up

Export Citation Format

Share Document