Dynamic Scene Multi-Exposure Image Fusion

2018 ◽  
Vol 59 (2) ◽  
pp. 53-61
Author(s):  
Uzmanaz A. Shaikh ◽  
Vivek J. Vishwakarma ◽  
Shubham S. Mahale
Keyword(s):  
Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1597 ◽  
Author(s):  
Guanqiu Qi ◽  
Liang Chang ◽  
Yaqin Luo ◽  
Yinong Chen ◽  
Zhiqin Zhu ◽  
...  

Multi exposure image fusion (MEF) provides a concise way to generate high-dynamic-range (HDR) images. Although the precise fusion can be achieved by existing MEF methods in different static scenes, the corresponding performance of ghost removal varies in different dynamic scenes. This paper proposes a precise MEF method based on feature patches (FPM) to improve the robustness of ghost removal in a dynamic scene. A reference image is selected by a priori exposure quality first and then used in the structure consistency test to solve the image ghosting issues existing in the dynamic scene MEF. Source images are decomposed into spatial-domain structures by a guided filter. Both the base and detail layer of the decomposed images are fused to achieve the MEF. The structure decomposition of the image patch and the appropriate exposure evaluation are integrated into the proposed solution. Both global and local exposures are optimized to improve the fusion performance. Compared with six existing MEF methods, the proposed FPM not only improves the robustness of ghost removal in a dynamic scene, but also performs well in color saturation, image sharpness, and local detail processing.


2015 ◽  
Vol 109 (6) ◽  
pp. 5-9 ◽  
Author(s):  
Rajvi Patel ◽  
Manali Rajput ◽  
Pramit Parekh

2005 ◽  
Vol 173 (4S) ◽  
pp. 414-414
Author(s):  
Frank G. Fuechsel ◽  
Agostino Mattei ◽  
Sebastian Warncke ◽  
Christian Baermann ◽  
Ernst Peter Ritter ◽  
...  

2004 ◽  
Vol 43 (03) ◽  
pp. 85-90 ◽  
Author(s):  
E. Lopez Hänninen ◽  
Th. Steinmüller ◽  
T. Rohlfing ◽  
H. Bertram ◽  
M. Gutberlet ◽  
...  

Summary Aim: Minimally invasive resection of hyperfunctional parathyroid glands is an alternative to open surgery. However, it requires a precise preoperative localization. This study evaluated the diagnostic use of magnetic resonance (MR) imaging, parathyroid scintigraphy, and consecutive image fusion. Patients, methods: 17 patients (9 women, 8 men; age: 29-72 years; mean: 51.2 years) with primary hyperparathyroidism were included. Examination by MRI used unenhanced T1- and T2-weighted sequences as well as contrast-enhanced T1-weighted sequences. 99mTc-MIBI scintigraphy consisted of planar and SPECT (single photon emission tomography) imaging techniques. In order to improve the anatomical localization of a scintigraphic focus, SPECT-data were fused with the corresponding MR-data using a modified version of the Express 5.0 software (Advanced Visual Systems, Waltham, MA). Results of image fusion were then compared to histopathology. Results: In 14/17 patients, a single parathyroid adenoma was found. There were 3 cases with hyperplastic glands. MRI detected 10 (71%), scintigraphy 12 (86%) adenomas. Both modalities detected 1/3 patients with hyperplasia. Image fusion improved the anatomical assignment of the 13 scintigraphic foci in five patients and was helpful in the interpretation of inconclusive MR-findings in two patients. Conclusions: Both MRI and 99mTc-MIBI scintigraphy sensitively detect parathyroid adenomas but are less reliable in case of hyperplastic glands. In case of a scintigraphic focus, image fusion considerably improves its topographic assignment. Furthermore, it facilitates the evaluation of inconclusive MRI findings.


2019 ◽  
Vol 2019 (2) ◽  
pp. 187-1-187-6
Author(s):  
Fayez Lahoud ◽  
Sabine Süsstrunk

Sign in / Sign up

Export Citation Format

Share Document