Assessing changes in the above ground biomass and carbon stocks of Lidder valley, Kashmir Himalaya, India

2016 ◽  
Vol 32 (7) ◽  
pp. 717-734 ◽  
Author(s):  
Irfan Rashid ◽  
Mudasir Ahmad Bhat ◽  
Shakil Ahmad Romshoo
2000 ◽  
Vol 48 (6) ◽  
pp. 707 ◽  
Author(s):  
W. H. Burrows ◽  
M. B. Hoffmann ◽  
J. F. Compton ◽  
P. V. Back ◽  
L. J. Tait

Allometric equations are presented relating stem circumference to branch, leaf, trunk, bark, total above-ground and lignotuber biomass for Eucalyptus crebra F.Muell. (woodland trees), E. melanophloia Sol. Ex Gaerth. (both woodland and regrowth community trees) and E. populnea F.Muell. (woodland trees). There were no significant differences (P > 0.05) between the slopes of individual lognormal regression lines plotting stem circumference against total above-ground biomass for E. crebra, E. melanophloia and E. populnea. Root-to-shoot ratios and leaf area indices were also determined for the stands contributing to each regression. The regressions were then applied to measured eucalypt stems in the associated plant community to give estimates of each stand’s component (eucalypt tree fraction only) biomass per hectare. These eucalypt regressions were next applied to measured stems of each species on a total of 33 woodland sites in which these eucalypts individually contributed > 75% of total site basal area. Above-ground biomass/basal area relationships averaged 6.74 0.29 t m–2 basal area for 11 E. crebra sites, 5.11 0.28 t m–2 for 12 E. melanophloia sites and 5.81 0.11 t m–2 for 10 E. populnea sites. The mean relationship for all sites was 5.86 0.18 t m–2 basal area. The allometric relationships presented at both individual tree and stand levels, along with calculated biomass : basal area relationships, enable ready estimates to be made of above-ground biomass (carbon stocks) in woodlands dominated by these eucalypts in Queensland, assuming individual stem circumferences or community basal areas are known. However, to document changes in carbon stocks (e.g. for Greenhouse Gas Inventory or Carbon Offset trading purposes), more attention needs to be placed on monitoring fluxes in the independent variables (predictors) of these allometric equations.


2021 ◽  
Vol 22 (3) ◽  
Author(s):  
YOSEP RUSLIM ◽  
Daud Sandalayuk ◽  
Rochadi Kristiningrum ◽  
Andi Sahri Alam

Abstract. Ruslim Y, Sandalayuk D, Kristiningrum R, Alam AS. 2021. Estimation of Above Ground Biomass and carbon stocks of Tectona grandis and Gmelina arborea stand in Gorontalo Province, Indonesia. Biodiversitas 22: 1497-1508. Plantation forest plays an important role to fulfill timber needs, while more recently plantation forest is increasingly acknowledged to sequester and store carbon which can mitigate climate change and also as carbon sequestration for the environment. This study aimed to calculate the stand potential, stand biomass and carbon stocks of teak (Tectona grandis) and gmelina (Gmelina arborea) stands in the context of land after being abandoned in Gorontalo Province, Indonesia. Four plots with size of one hectare each were sampled in which each species (i.e. teak and gmelina) consisted of two plots. In each plot, the diameter at the breast-high (1.3 m) and the height of each individual were recorded. Data analysis included growth parameters of the stands (i.e., Mean Annual Increment/MAI and Current Annual Increment/CAI) and above-ground biomass and carbon sequestered by the stands. Simple linear regression using polynomial trendline was used to determine the relationship between variables and the degree of the relationship. The results showed that the maximum growth of teak stands at Plots I and II reached a maximum point at the age of 32 and 25 years with the total volume of 307.50 and 254.81 m3ha-1, respectively. While the maximum growth of gmelina stands at Plots I and II reached a maximum point at the age of 15 years with the total volume of 190.54 and 251.80 m3ha-1, respectively. The biomass content in teak stands at Plots I and II and gmelina stands at Plots I and II were respectively 267.83; 221.94; 104.03 and 137.48 tons ha-1. Meanwhile, the carbon content in teak stands at Plots I and II and gmelina stands at Plots I and II were respectively 125.88; 104.31; 48.90; and 64.62 tons ha-1. The results of the regression analysis suggest that there was strong relationship between carbon sequestered and the age of the stands as well as total basal area. The results of this study suggest that Tectona grandis is more potential to be developed as plantation forest than Gmelina arborea when aiming at carbon sequestration and biomass production.


2000 ◽  
Vol 22 (1) ◽  
pp. 124 ◽  
Author(s):  
RM Lucas ◽  
AK Milne ◽  
N Cronin ◽  
C Witte ◽  
R Denham

The potential of Synthetic Aperture Radar (SAR) for estimating the above ground and component biomass of woodlands in Australia is demonstrated using two case studies. Case Study 1 (In,june; central Queensland) shows that JERS-1 SAR L HH data can be related more to the trunk than the leaf and branch biomass of woodlands. A strong relationship between L HH and above ground biomass is obtained when low biomass pasture sites are included. Case Study I1 (Talwood, southern Queensland) determines that L and P band data can be related both to trunk and branch biomass, due to the similarity in the orientation and size of these scattering elements, and also to total above ground biomass. Saturation of the C. L and P band data occurred at approximately 20-30 Mglha; 60-80 Mglha and 80-100 Mglha. These preliminary results indicate that data from SAR are useful for quantifying changes in carbon stocks resulting from land use change in Australia's woodlands and for applications in rangeland assessment and management. Key words: remote sensing, biomass, woodlands


2016 ◽  
Vol 64 (2) ◽  
pp. 897 ◽  
Author(s):  
Adriana Yepes

<p><strong>Abstract: Tree above-ground biomass allometries for carbon stocks estimation in the Caribbean mangroves in Colombia</strong></p><p>In this study, we analyzed the above ground biomass of the species <em>Rhizophora mangle</em> and <em>Avicennia germinans</em> in the mangrove ecosystem located at Marine Protected Area called in Spanish Distrito de Manejo Integrado (DMI) Cispatá-Tinajones-La Balsa, Caribbean Colombian coast. We harvest 30 individuals of each species in field and built allometric models in order to estimates of aboveground biomass with low levels of uncertainty. Our results indicate that the above ground biomass of mangrove forests in the DMI Colombian Caribbean is the 129.69±20.24Mg/ha, the equivalent to 64.85±10.12MgC/ha. The DMI has an area of 8 570.9ha in mangrove forests, and we estimated the total carbon potential stored is about 555 795.93Mg. Although there are pantropical and national above ground biomass allometric models, most of them do not discriminate mangrove forests, despite being particular ecosystems. The equations generated in this study can be considered as an alternative for the assessment of carbon stocks in above ground biomass of mangrove forests in Colombia, and can be used for analysis at a more detailed scale and they are useful for determinate the potential for carbon storage in mangrove forests like an option for the country in forest conservation and emission reduction by deforestation.</p>


2014 ◽  
Vol 04 (05) ◽  
pp. 481-491 ◽  
Author(s):  
Romeo Ekoungoulou ◽  
Xiaodong Liu ◽  
Jean Joël Loumeto ◽  
Suspense Averti Ifo ◽  
Yannick Enock Bocko ◽  
...  

2012 ◽  
Vol 267 ◽  
pp. 297-308 ◽  
Author(s):  
Esteban Alvarez ◽  
Alvaro Duque ◽  
Juan Saldarriaga ◽  
Kenneth Cabrera ◽  
Gonzalo de las Salas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document