scholarly journals Estimation of Above Ground Biomass and carbon stocks of Tectona grandis and Gmelina arborea stands in Gorontalo Province, Indonesia

2021 ◽  
Vol 22 (3) ◽  
Author(s):  
YOSEP RUSLIM ◽  
Daud Sandalayuk ◽  
Rochadi Kristiningrum ◽  
Andi Sahri Alam

Abstract. Ruslim Y, Sandalayuk D, Kristiningrum R, Alam AS. 2021. Estimation of Above Ground Biomass and carbon stocks of Tectona grandis and Gmelina arborea stand in Gorontalo Province, Indonesia. Biodiversitas 22: 1497-1508. Plantation forest plays an important role to fulfill timber needs, while more recently plantation forest is increasingly acknowledged to sequester and store carbon which can mitigate climate change and also as carbon sequestration for the environment. This study aimed to calculate the stand potential, stand biomass and carbon stocks of teak (Tectona grandis) and gmelina (Gmelina arborea) stands in the context of land after being abandoned in Gorontalo Province, Indonesia. Four plots with size of one hectare each were sampled in which each species (i.e. teak and gmelina) consisted of two plots. In each plot, the diameter at the breast-high (1.3 m) and the height of each individual were recorded. Data analysis included growth parameters of the stands (i.e., Mean Annual Increment/MAI and Current Annual Increment/CAI) and above-ground biomass and carbon sequestered by the stands. Simple linear regression using polynomial trendline was used to determine the relationship between variables and the degree of the relationship. The results showed that the maximum growth of teak stands at Plots I and II reached a maximum point at the age of 32 and 25 years with the total volume of 307.50 and 254.81 m3ha-1, respectively. While the maximum growth of gmelina stands at Plots I and II reached a maximum point at the age of 15 years with the total volume of 190.54 and 251.80 m3ha-1, respectively. The biomass content in teak stands at Plots I and II and gmelina stands at Plots I and II were respectively 267.83; 221.94; 104.03 and 137.48 tons ha-1. Meanwhile, the carbon content in teak stands at Plots I and II and gmelina stands at Plots I and II were respectively 125.88; 104.31; 48.90; and 64.62 tons ha-1. The results of the regression analysis suggest that there was strong relationship between carbon sequestered and the age of the stands as well as total basal area. The results of this study suggest that Tectona grandis is more potential to be developed as plantation forest than Gmelina arborea when aiming at carbon sequestration and biomass production.

2021 ◽  
Vol 11 (01) ◽  
pp. 100-113
Author(s):  
M. G. Origenes ◽  
R. L. Lapitan

It is documented that the amounts of carbon stored and its level of degradation in different forests compositions and different types of forest is mostly unknown, Philippines is no exemption as little was done in some places of this country. This study was conducted to assess carbon stock through above ground biomass of trees at different forest composition in Mt. Malindawag. There were three (3) 20m x 20m sample plots (quadrats) (400m2 equivalent to 0.04 ha) established as replicate plots provided with 50m intervals. Forest composition such as the Agroforestry area, mixed forest area and the Plantation forest were assessed in terms of the number of individuals, number of species, diameter, and height to calculate the biomass, tree biomass density as well as the carbon stock. Based on the results of the study conducted in different forest compositions of Mt. Malindawag, plantation forest has the highest carbon stocking rate. However, these results were not significantly different from the other forest composition. This was associated with a higher accumulated diameter, which resulted in higher biomass and eventually carbon stock. Species found in this forest composition are productive and have lesser number of individuals; therefore, there is lesser competition for resources such as light. Such a mechanism might contribute to the higher biomass and carbon stock. However, the result may not be right to other areas due to uncontrollable factors, anthropogenic and environmental factors. Hence, it is recommended to have further studies on areas where trees have similar age, species diversity index as well as stand development and site productivity for a more accurate and quantifiable carbon stock.


2000 ◽  
Vol 48 (6) ◽  
pp. 707 ◽  
Author(s):  
W. H. Burrows ◽  
M. B. Hoffmann ◽  
J. F. Compton ◽  
P. V. Back ◽  
L. J. Tait

Allometric equations are presented relating stem circumference to branch, leaf, trunk, bark, total above-ground and lignotuber biomass for Eucalyptus crebra F.Muell. (woodland trees), E. melanophloia Sol. Ex Gaerth. (both woodland and regrowth community trees) and E. populnea F.Muell. (woodland trees). There were no significant differences (P > 0.05) between the slopes of individual lognormal regression lines plotting stem circumference against total above-ground biomass for E. crebra, E. melanophloia and E. populnea. Root-to-shoot ratios and leaf area indices were also determined for the stands contributing to each regression. The regressions were then applied to measured eucalypt stems in the associated plant community to give estimates of each stand’s component (eucalypt tree fraction only) biomass per hectare. These eucalypt regressions were next applied to measured stems of each species on a total of 33 woodland sites in which these eucalypts individually contributed > 75% of total site basal area. Above-ground biomass/basal area relationships averaged 6.74 0.29 t m–2 basal area for 11 E. crebra sites, 5.11 0.28 t m–2 for 12 E. melanophloia sites and 5.81 0.11 t m–2 for 10 E. populnea sites. The mean relationship for all sites was 5.86 0.18 t m–2 basal area. The allometric relationships presented at both individual tree and stand levels, along with calculated biomass : basal area relationships, enable ready estimates to be made of above-ground biomass (carbon stocks) in woodlands dominated by these eucalypts in Queensland, assuming individual stem circumferences or community basal areas are known. However, to document changes in carbon stocks (e.g. for Greenhouse Gas Inventory or Carbon Offset trading purposes), more attention needs to be placed on monitoring fluxes in the independent variables (predictors) of these allometric equations.


2020 ◽  
Author(s):  
Benedicto Vargas-Larreta ◽  
Jorge Omar Lopez Martinez ◽  
Edgar J. González ◽  
Jose Javier Corral-Rivas ◽  
Francisco Javier Hernández

Abstract Background: Studies on the relationship between biodiversity and ecosystem productivity have suggested that species richness and functional diversity are the main drivers of ecosystem processes. Several patterns on this relationship have been found, including positive, unimodal, negative, and neutral trends, keeping the issue controversial. In this study, taxonomic diversity and functional diversity as drivers of above-ground biomass (AGB) were comparated, and the mechanisms that influence biomass production were investigated by testing the complementarity and the mass-ratio hypotheses.Methods: Using data from 414 permanent sample plots, covering 23% of temperate forest in the Sierra Madre Oriental (México). We estimated the above-gound biomass (AGB), taxonomic and functional diversity indices, as well as community weighted mean values (CWM) for three functional trais (maximum height, leaf size and wood density) for trees ≥7.5 cm d.b.h., in managed and unmanaged stands. To compare taxonomic diversity differences between managed and unmanaged stands we carried out a rarefaction analysis. Furthermore, we evaluated the relationship between AGB and taxonomic and functional diversity metrics, as well as CWM traits throught spatial autoregressive models.Results: We found a hump-shaped relationship between AGB and species richness in managed and unmanaged forests. CMW of maximum height was the most important predictor of AGB in both stands, which suggested that the mechanism underlaying the AGB-diversity relationship is the dominance of some highly productive species, supporting the mass-ratio hypothesis. Above-ground biomass was significantly correlated with three of the five functional diversity metrics, CWM maximum height and species richness. Our results show the importance of take into account spatial autocorrelation in the construction of predictive models to avoid spurious patterns in the AGB-diversity relationship.Conclusion: Species richness, maximum height, functional richness, functional dispersion and RaoQ indices relate with above-ground biomass production in temperate mixed-species and uneven-aged forests of northern Mexico. These forests show a hump-shaped AGB-species richness relationship. Functional diversity explains better AGB production than classical taxonomic diversity. Community weighted mean traits provide key information to explain stand biomass in these forests, where maximum tree height seems to be a more suitable trait for understanding the biomass accumulation process in these ecosystems. Although the impact of forest management on biodiversity is still debated, it has not changed the AGB-diversity relationships in the forests of the Sierra Madre Occidental, Mexico.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Shiva Pokhrel ◽  
Chungla Sherpa

Forests provide numerous ecosystem goods and services. Their roles are considered as important for both climate mitigation and adaptation program. In Nepal, there are significant forest resources which are distributed in different regions; however, the studies on the spatial tree species distribution and the above-ground biomass and their relationship at the landscape level have not been well studied. This study aims to analyze the relationship, distribution of tree species diversity, and above-ground biomass at a landscape level. The data used for this study were obtained from the Forest Research and Training Center of Nepal, International Centre for Integrated Mountain Development (ICIMOD), and Worldwide Wildlife Fund (WWF-Nepal). The landscape has a mean of 191.89 tons ha−1 of the above-ground biomass. The highest amount of the above-ground biomass measured was 650 tons ha−1 with 96 individual trees, and the least was 3.428 tons ha−1. The measured mean height of the tree was 11.77 m, and diameter at breast height (DBH) was 18.59 cm. In the case of the spatial distribution of the above-ground biomass, plots distributed at the middle altitude range greater than 900 meters above sea level (m. a. s. l) to 3000 meters above sea level taking more amount of the above-ground biomass (AGB). Similarly, the highest plot-level Shannon diversity index (H’) was 2.75 with an average of 0.96 at the middle altitude region followed by the lower region with an average of 0.89 and least 0.87 at a higher elevation. Above-ground biomass (R2 = 0.48) and tree height (R2 = 0.506) significantly increased with increasing elevation up to a certain level increased of elevation. Diameter at breast height (DBH) showed significance (R2 = 0.364) but small increase with increasing elevation, while the relationship among tree species diversity index, above-ground biomass, and elevation showed a weak and very weak positive relationship with R2 = 0.018 and R2 = 0.002, respectively. Based on the overall results, it is concluded that elevation has some level of influence on the forest tree diversity and above-ground biomass. The finding of this study could be useful for landscape-level resource management and planning under various changes.


2021 ◽  
Vol 50 (2) ◽  
pp. 365-371
Author(s):  
Mohammed Mukhlesur Rahman ◽  
Syed Hafizur Rahman ◽  
Mohammed Al Amin

The study was conducted to estimate the biomass and carbon stock in the dominant tree species of the Kaptai National Park of Bangladesh. A total of 77 tracks and 308 plots were selected and all trees in each plot were measured to estimate the biomass following allometric equations. There were planted stand of Acacia auriculiformis, Dipterocarpus turbinatus, Gmelina arborea, Lagerstroemia speciosa, Swietenia macrophylla and Tectona grandis. Biomass and carbon stocks of these corresponding tree species were 35.03, 73.86, 23.52, 30.16, 44.49, and 42.67 mg/ha. The highest carbon stock per tree was in D. turbinatus (372.19 kg C/tree), followed by S. macrophylla (226.49 kg C/tree), T. grandis (215.06 kg C/tree), A. auriculiformis (176.56 kg C/tree), L. speciosa (151.19 kg C/tree) and G. arborea (118.54 kg C/tree), respectively. The findings of the study will be helpful for the estimation of carbon stocks in the forests of Bangladesh. Bangladesh J. Bot. 50(2): 365-371, 2021 (June)


2000 ◽  
Vol 22 (1) ◽  
pp. 124 ◽  
Author(s):  
RM Lucas ◽  
AK Milne ◽  
N Cronin ◽  
C Witte ◽  
R Denham

The potential of Synthetic Aperture Radar (SAR) for estimating the above ground and component biomass of woodlands in Australia is demonstrated using two case studies. Case Study 1 (In,june; central Queensland) shows that JERS-1 SAR L HH data can be related more to the trunk than the leaf and branch biomass of woodlands. A strong relationship between L HH and above ground biomass is obtained when low biomass pasture sites are included. Case Study I1 (Talwood, southern Queensland) determines that L and P band data can be related both to trunk and branch biomass, due to the similarity in the orientation and size of these scattering elements, and also to total above ground biomass. Saturation of the C. L and P band data occurred at approximately 20-30 Mglha; 60-80 Mglha and 80-100 Mglha. These preliminary results indicate that data from SAR are useful for quantifying changes in carbon stocks resulting from land use change in Australia's woodlands and for applications in rangeland assessment and management. Key words: remote sensing, biomass, woodlands


2009 ◽  
Vol 15 ◽  
pp. 23-27
Author(s):  
Pitamber Pant ◽  
Hari Datt Lekhak

Present study was conducted in the Suklaphanta Wildlife Reserve, Kanchanpur district, far western Nepal during June-July, 2005. A total of 150 quadrats (1m x 1m) were sampled in three differentially treated sites (unburned, early burned and late burned). Plant community composition and above ground biomass at different sites were quantified. The relationship between species richness and biomass was detected in the Imperata-Saccharum grassland. Altogether 100 plant species were recorded in the grassland. The highest number of species (62) was recorded in early burned site, whereas lowest (54) species were recorded from unburned site. Among all species recorded, 23 were common to all sites. The highest species richness (13 species/m²) was recorded in the early burned plot. The above ground biomass was highest (583.93 g/m²) in unburned plot. Mean above ground biomass of all the three sites of the grassland was 249.72 g/m². These results indicate that the burning has significant impact on both species richness and biomass. Maximum species richness was found in the biomass interval between ca. 100-300 g/m² when all the sites were combined. A hump shaped pattern was observed in the grassland when all the data were combined. Key words: Species richness, biomass, generalized linear model, fire.   doi: 10.3126/eco.v15i0.1938 ECOPRINT 15: 23-27, 2008


Sign in / Sign up

Export Citation Format

Share Document