On necessary and sufficient conditions for the asymptotic stability of higher order linear difference equations

2012 ◽  
Vol 18 (11) ◽  
pp. 1781-1800 ◽  
Author(s):  
Jan Čermák ◽  
Jiří Jánský ◽  
Petr Kundrát
Mathematics ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 585 ◽  
Author(s):  
Osama Moaaz ◽  
Dimplekumar Chalishajar ◽  
Omar Bazighifan

In this work, we consider the general class of difference equations (covered many equations that have been studied by other authors or that have never been studied before), as a means of establishing general theorems, for the asymptotic behavior of its solutions. Namely, we state new necessary and sufficient conditions for local asymptotic stability of these equations. In addition, we study the periodic solution with period two and three. Our results essentially extend and improve the earlier ones.


2009 ◽  
Vol 16 (4) ◽  
pp. 597-616
Author(s):  
Shota Akhalaia ◽  
Malkhaz Ashordia ◽  
Nestan Kekelia

Abstract Necessary and sufficient conditions are established for the stability in the Lyapunov sense of solutions of a linear system of generalized ordinary differential equations 𝑑𝑥(𝑡) = 𝑑𝐴(𝑡) · 𝑥(𝑡) + 𝑑𝑓(𝑡), where and are, respectively, matrix- and vector-functions with bounded total variation components on every closed interval from . The results are realized for the linear systems of impulsive, ordinary differential and difference equations.


1992 ◽  
Vol 16 (2) ◽  
pp. 101-126
Author(s):  
Egidio Astesiano ◽  
Maura Cerioli

In this paper the classes of extensional models of higher-order partial conditional specifications are studied, with the emphasis on the closure properties of these classes. Further it is shown that any equationally complete inference system for partial conditional specifications may be extended to an inference system for partial higher-order conditional specifications, which is equationally complete w.r.t. the class of all extensional models. Then, applying some previous results, a deduction system is proposed, equationally complete for the class of extensional models of a partial conditional specification. Finally, turning the attention to the special important case of termextensional models, it is first shown a sound and equationally complete inference system and then necessary and sufficient conditions are given for the existence of free models, which are also free in the class of term-generated extensional models.


2004 ◽  
Vol 134 (6) ◽  
pp. 1177-1197 ◽  
Author(s):  
Martin Krupa ◽  
Ian Melbourne

Systems possessing symmetries often admit robust heteroclinic cycles that persist under perturbations that respect the symmetry. In previous work, we began a systematic investigation into the asymptotic stability of such cycles. In particular, we found a sufficient condition for asymptotic stability, and we gave algebraic criteria for deciding when this condition is also necessary. These criteria are satisfied for cycles in R3.Field and Swift, and Hofbauer, considered examples in R4 for which our sufficient condition for stability is not optimal. They obtained necessary and sufficient conditions for asymptotic stability using a transition-matrix technique.In this paper, we combine our previous methods with the transition-matrix technique and obtain necessary and sufficient conditions for asymptotic stability for a larger class of heteroclinic cycles. In particular, we obtain a complete theory for ‘simple’ heteroclinic cycles in R4 (thereby proving and extending results for homoclinic cycles that were stated without proof by Chossat, Krupa, Melbourne and Scheel). A partial classification of simple heteroclinic cycles in R4 is also given. Finally, our stability results generalize naturally to higher dimensions and many of the higher-dimensional examples in the literature are covered by this theory.


Author(s):  
Przemysław Przyborowski ◽  
Tadeusz Kaczorek

Positive 2D Discrete-Time Linear Lyapunov SystemsTwo models of positive 2D discrete-time linear Lyapunov systems are introduced. For both the models necessary and sufficient conditions for positivity, asymptotic stability, reachability and observability are established. The discussion is illustrated with numerical examples.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Lucas MacQuarrie ◽  
Nasser Saad ◽  
Md. Shafiqul Islam

AbstractHahn’s difference operator $D_{q;w}f(x) =({f(qx+w)-f(x)})/({(q-1)x+w})$ D q ; w f ( x ) = ( f ( q x + w ) − f ( x ) ) / ( ( q − 1 ) x + w ) , $q\in (0,1)$ q ∈ ( 0 , 1 ) , $w>0$ w > 0 , $x\neq w/(1-q)$ x ≠ w / ( 1 − q ) is used to unify the recently established difference and q-asymptotic iteration methods (DAIM, qAIM). The technique is applied to solve the second-order linear Hahn difference equations. The necessary and sufficient conditions for polynomial solutions are derived and examined for the $(q;w)$ ( q ; w ) -hypergeometric equation.


Sign in / Sign up

Export Citation Format

Share Document