Asymptotic iteration method for solving Hahn difference equations
AbstractHahn’s difference operator $D_{q;w}f(x) =({f(qx+w)-f(x)})/({(q-1)x+w})$ D q ; w f ( x ) = ( f ( q x + w ) − f ( x ) ) / ( ( q − 1 ) x + w ) , $q\in (0,1)$ q ∈ ( 0 , 1 ) , $w>0$ w > 0 , $x\neq w/(1-q)$ x ≠ w / ( 1 − q ) is used to unify the recently established difference and q-asymptotic iteration methods (DAIM, qAIM). The technique is applied to solve the second-order linear Hahn difference equations. The necessary and sufficient conditions for polynomial solutions are derived and examined for the $(q;w)$ ( q ; w ) -hypergeometric equation.