scholarly journals Asymptotic iteration method for solving Hahn difference equations

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Lucas MacQuarrie ◽  
Nasser Saad ◽  
Md. Shafiqul Islam

AbstractHahn’s difference operator $D_{q;w}f(x) =({f(qx+w)-f(x)})/({(q-1)x+w})$ D q ; w f ( x ) = ( f ( q x + w ) − f ( x ) ) / ( ( q − 1 ) x + w ) , $q\in (0,1)$ q ∈ ( 0 , 1 ) , $w>0$ w > 0 , $x\neq w/(1-q)$ x ≠ w / ( 1 − q ) is used to unify the recently established difference and q-asymptotic iteration methods (DAIM, qAIM). The technique is applied to solve the second-order linear Hahn difference equations. The necessary and sufficient conditions for polynomial solutions are derived and examined for the $(q;w)$ ( q ; w ) -hypergeometric equation.

2012 ◽  
Vol 2012 ◽  
pp. 1-9
Author(s):  
I. A. Kolesnikova ◽  
V. M. Savchin

Necessary and sufficient conditions for the existence of variational principles for a given wide class of evolutionary differential-difference operator equation are obtained. The theoretic results are illustrated by two examples.


2009 ◽  
Vol 16 (4) ◽  
pp. 597-616
Author(s):  
Shota Akhalaia ◽  
Malkhaz Ashordia ◽  
Nestan Kekelia

Abstract Necessary and sufficient conditions are established for the stability in the Lyapunov sense of solutions of a linear system of generalized ordinary differential equations 𝑑𝑥(𝑡) = 𝑑𝐴(𝑡) · 𝑥(𝑡) + 𝑑𝑓(𝑡), where and are, respectively, matrix- and vector-functions with bounded total variation components on every closed interval from . The results are realized for the linear systems of impulsive, ordinary differential and difference equations.


Open Physics ◽  
2013 ◽  
Vol 11 (6) ◽  
Author(s):  
Mojtaba Soorki ◽  
Mohammad Tavazoei

AbstractThis paper deals with fractional-order linear time invariant swarm systems. Necessary and sufficient conditions for asymptotic swarm stability of these systems are presented. Also, based on a time response analysis the speed of convergence in an asymptotically swarm stable fractional-order linear time invariant swarm system is investigated and compared with that of its integer-order counterpart. Numerical simulation results are presented to show the effectiveness of the paper results.


2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
E. J. Janowski ◽  
M. R. S. Kulenović

Consider the difference equationxn+1=f(xn,…,xn−k),n=0,1,…,wherek∈{1,2,…}and the initial conditions are real numbers. We investigate the existence and nonexistence of the minimal period-two solution of this equation when it can be rewritten as the nonautonomous linear equationxn+l=∑i=1−lkgixn−i,n=0,1,…,wherel,k∈{1,2,…}and the functionsgi:ℝk+l→ℝ. We give some necessary and sufficient conditions for the equation to have a minimal period-two solution whenl=1.


2007 ◽  
Vol 14 (1) ◽  
pp. 81-97
Author(s):  
Alberto Cialdea

Abstract Let {ω𝑘 } be a complete system of polynomial solutions of the elliptic equation ∑|α|⩽2𝑚 aα 𝐷 α 𝑢 = 0, aα being real constants. We give necessary and sufficient conditions for the completeness of the system in [𝐿𝑝(∂Ω)]𝑚, where Ω ⊂ is a bounded domain such that is connected and ∂Ω ∈ 𝐶1.


Sign in / Sign up

Export Citation Format

Share Document