scholarly journals Whole body segment inertia parameters estimation from movement and ground reaction forces: a feasibility study

2017 ◽  
Vol 20 (sup1) ◽  
pp. S175-S176 ◽  
Author(s):  
T. Robert ◽  
P. Leborgne ◽  
M. Abid ◽  
V. Bonnet ◽  
G. Venture ◽  
...  
Sports ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 200
Author(s):  
Samuel J. Callaghan ◽  
Robert G. Lockie ◽  
Warren A. Andrews ◽  
Walter Yu ◽  
Robert F. Chipchase ◽  
...  

Pace bowlers must often perform extended bowling spells with maximal ball release speed (BRS) while targeting different delivery lengths when playing a multi-day match. This study investigated the effect of an eight over spell upon pace bowling biomechanics and performance at different delivery lengths. Nine male bowlers (age = 18.8 ± 1.7 years) completed an eight over spell, while targeting different lengths (short: 7–10 m, good: 4–7 m, full: 0–4 m from the batter’s stumps, respectively) in a randomized order. Trunk, knee and shoulder kinematics and ground reaction forces at front foot contact (FFC), as well as run-up velocity and BRS were measured. Paired sample t-tests (p ≤ 0.01), Hedges’ g effect sizes, and statistical parametrical mapping were used to assess differences between mean variables from the first and last three overs. No significant differences (p = 0.05–0.98) were found in any discrete or continuous variables, with the magnitude of difference being trivial-to-medium (g = 0.00–0.73) across all variables. Results suggest pace bowlers sustain BRS through a single eight over spell while tolerating the repeatedly high whole-body biomechanical loads as suggested by maintaining the kinematics or technique at the assessed joints during FFC. Practically, the findings are advantageous for bowling performance and support current bowling load monitoring practices.


2016 ◽  
Vol 48 ◽  
pp. 1073
Author(s):  
Madeline Simon ◽  
Angela Sondalle ◽  
Matthew Ferlindes ◽  
David M. Bazett-Jones

2017 ◽  
Author(s):  
Damiana A dos Santos ◽  
Claudiane A Fukuchi ◽  
Reginaldo K Fukuchi ◽  
Marcos Duarte

This article describes a public data set with the three-dimensional kinematics of the whole body and the ground reaction forces (with a dual force platform setup) of subjects standing still for 60 s in different conditions, in which the vision and the standing surface were manipulated. Twenty-seven young subjects and 22 old subjects were evaluated. The data set comprises a file with metadata plus 1,813 files with the ground reaction force (GRF) and kinematics data for the 49 subjects (three files for each of the 12 trials plus one file for each subject). The file with metadata has information about each subject’s sociocultural, demographic, and health characteristics. The files with the GRF have the data from each force platform and from the resultant GRF (including the center of pressure data). The files with the kinematics have the three-dimensional position of the 42 markers used for the kinematic model of the whole body and the 73 calculated angles. In this text, we illustrate how to access, analyze, and visualize the data set. All the data is available at Figshare (DOI: 10.6084/m9.figshare.4525082 ), and a companion Jupyter Notebook (available at https://github.com/demotu/datasets ) presents the programming code to generate analyses and other examples.


2017 ◽  
Author(s):  
Damiana A dos Santos ◽  
Claudiane A Fukuchi ◽  
Reginaldo K Fukuchi ◽  
Marcos Duarte

This article describes a public data set with the three-dimensional kinematics of the whole body and the ground reaction forces (with a dual force platform setup) of subjects standing still for 60 s in different conditions, in which the vision and the standing surface were manipulated. Twenty-seven young subjects and 22 old subjects were evaluated. The data set comprises a file with metadata plus 1,813 files with the ground reaction force (GRF) and kinematics data for the 49 subjects (three files for each of the 12 trials plus one file for each subject). The file with metadata has information about each subject’s sociocultural, demographic, and health characteristics. The files with the GRF have the data from each force platform and from the resultant GRF (including the center of pressure data). The files with the kinematics have the three-dimensional position of the 42 markers used for the kinematic model of the whole body and the 73 calculated angles. In this text, we illustrate how to access, analyze, and visualize the data set. All the data is available at Figshare (DOI: 10.6084/m9.figshare.4525082 ), and a companion Jupyter Notebook (available at https://github.com/demotu/datasets ) presents the programming code to generate analyses and other examples.


2019 ◽  
Vol 22 (6) ◽  
pp. 716-722 ◽  
Author(s):  
Jasper Verheul ◽  
Warren Gregson ◽  
Paulo Lisboa ◽  
Jos Vanrenterghem ◽  
Mark A. Robinson

2007 ◽  
Vol 97 (4) ◽  
pp. 2663-2675 ◽  
Author(s):  
Simon F. Giszter ◽  
Michelle R. Davies ◽  
Virginia Graziani

Some rats spinalized P1/P2 achieve autonomous weight-supported locomotion and quiet stance as adults. We used force platforms and robot-applied perturbations to test such spinalized rats ( n = 6) that exhibited both weight-supporting locomotion and stance, and also normal rats ( n = 8). Ground reaction forces in individual limbs and the animals' center of pressure were examined. In normal rats, both forelimbs and hindlimbs participated actively to control horizontal components of ground reaction forces. Rostral perturbations increased forelimb ground reaction forces and caudal perturbations increased hindlimb ground reaction forces. Operate rats carried 60% body weight on the forelimbs and had a more rostral center of pressure placement. The pattern in normal rats was to carry significantly more weight on the hindlimbs in quiet stance (roughly 60%). The strategy of operate rats to compensate for perturbations was entirely in forelimbs; as a result, the hindlimbs were largely isolated from the perturbation. Stiffness magnitude of the whole body was measured: its magnitude was hourglass shaped, with the principal axis oriented rostrocaudally. Operate rats were significantly less stiff—only 60–75% of normal rats' stiffness. The injured rats adopt a stance strategy that isolates the hindlimbs from perturbation and may thus prevent hindlimb loadings. Such loadings could initiate reflex stepping, which we observed. This might activate lumbar pattern generators used in their locomotion. Adult spinalized rats never achieve independent hindlimb weight-supported stance. The stance strategy of the P1 spinalized rats differed strongly from the behavior of intact rats and may be difficult for rats spinalized as adults to master.


2014 ◽  
Vol 47 (7) ◽  
pp. 1577-1581 ◽  
Author(s):  
Clint Hansen ◽  
Gentiane Venture ◽  
Nasser Rezzoug ◽  
Philippe Gorce ◽  
Brice Isableu

2013 ◽  
Vol 10 (84) ◽  
pp. 20130222 ◽  
Author(s):  
Ine Van Caekenberghe ◽  
Veerle Segers ◽  
Peter Aerts ◽  
Patrick Willems ◽  
Dirk De Clercq

Literature shows that running on an accelerated motorized treadmill is mechanically different from accelerated running overground. Overground, the subject has to enlarge the net anterior–posterior force impulse proportional to acceleration in order to overcome linear whole body inertia, whereas on a treadmill, this force impulse remains zero, regardless of belt acceleration. Therefore, it can be expected that changes in kinematics and joint kinetics of the human body also are proportional to acceleration overground, whereas no changes according to belt acceleration are expected on a treadmill. This study documents kinematics and joint kinetics of accelerated running overground and running on an accelerated motorized treadmill belt for 10 young healthy subjects. When accelerating overground, ground reaction forces are characterized by less braking and more propulsion, generating a more forward-oriented ground reaction force vector and a more forwardly inclined body compared with steady-state running. This change in body orientation as such is partly responsible for the changed force direction. Besides this, more pronounced hip and knee flexion at initial contact, a larger hip extension velocity, smaller knee flexion velocity and smaller initial plantarflexion velocity are associated with less braking. A larger knee extension and plantarflexion velocity result in larger propulsion. Altogether, during stance, joint moments are not significantly influenced by acceleration overground. Therefore, we suggest that the overall behaviour of the musculoskeletal system (in terms of kinematics and joint moments) during acceleration at a certain speed remains essentially identical to steady-state running at the same speed, yet acting in a different orientation. However, because acceleration implies extra mechanical work to increase the running speed, muscular effort done (in terms of power output) must be larger. This is confirmed by larger joint power generation at the level of the hip and lower power absorption at the knee as the result of subtle differences in joint velocity. On a treadmill, ground reaction forces are not influenced by acceleration and, compared with overground, virtually no kinesiological adaptations to an accelerating belt are observed. Consequently, adaptations to acceleration during running differ from treadmill to overground and should be studied in the condition of interest.


Robotics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 88
Author(s):  
Elliot Recinos ◽  
John Abella ◽  
Shayan Riyaz ◽  
Emel Demircan

Recent advances in computational technology have enabled the use of model-based simulation with real-time motion tracking to estimate ground reaction forces during gait. We show here that a biomechanical-based model including a foot-ground contact can reproduce measured ground reaction forces using inertial measurement unit data during single-leg support, single-support jump, side to side jump, jogging, and skipping. The framework is based on our previous work on integrating the OpenSim musculoskeletal models with the Unity environment. The validation was performed on a single subject performing several tasks that involve the lower extremity. The novelty of this paper includes the integration and real-time tracking of inertial measurement unit data in the current framework, as well as the estimation of contact forces using biologically based musculoskeletal models. The RMS errors of tracking the vertical ground reaction forces are 0.027 bodyweight, 0.174 bodyweight, 0.173 bodyweight, 0.095 bodyweight, and 0.10 bodyweight for single-leg support, single-support jump, side to side jump, jogging, and skipping, respectively. The average RMS error for all tasks and trials is 0.112 bodyweight. This paper provides a computational framework for further applications in whole-body human motion analysis.


Sign in / Sign up

Export Citation Format

Share Document