Characterisation of arch expansion of cement stabilised road bases

Author(s):  
Xuancang Wang ◽  
Mengyuan Zhang ◽  
LongTing Ding ◽  
Liang Song ◽  
ShiYu Zhu
Keyword(s):  
Author(s):  
Zainab Ahmed Alkaissi ◽  
Hassan Adnan

The estimation of elastic modulus for road bases is the primary objective of this research which is implemented a significant role in transmitting the vertical loading to the pavement foundation layers. In this study, the effect of weathering conditions on the stiffness of base course is investigated and implied the durability test by subjecting the prepared samples to a different numbers of wet-dry cycles (0,2, 4, 6, 8 and 10). A conventional base materials of local natural gravel aggregate and treated base materials with recycled concrete aggregate RCA at different percentages (0%, 25%, 50% 75% and 100%) is adopted in this research. The elastic characteristics are estimated in terms of elastic modulus. Elastic modulus are estimated by passing the ultrasonic pulse velocity through the untreated and treated base materials laboratory specimens. This test can be used to study the elastic modulus properties of base materials. A multiple linear regression analysis is used for prediction the elastic modulus using the SPSS (software ver.21). Elastic Modulus (kPa) is the dependent variable whereas the independent variable are; No. of wet- dry cycle and Percent (%) of RCA stabilizer. The obtained results for elastic modulus (Es) of granular base material layer showed increasing in elastic modulus with percentage of RCA%., results revealed that the (Es) values reached a maximum value of (6927kPa) for 100%. For the OMC’s values increases due to the percentage increment of RCA in granular base material mixture, this increment in water contents is refer to high absorption capacity of the paste clinging to the RCA. On other side the dry density decrease gradually with adding percentage of (RCA) in granular base material mixture.


2018 ◽  
Vol 20 (2) ◽  
pp. 9-17
Author(s):  
Yongjae Kim ◽  
Haekook Jung ◽  
Seungwon Kim ◽  
Cheolwoo Park
Keyword(s):  

2012 ◽  
Vol 26 (1) ◽  
pp. 113-121 ◽  
Author(s):  
Hamad I. Al-Abdul Wahhab ◽  
Mirza G. Baig ◽  
Isam A. Mahmoud ◽  
Hisham M. Kattan
Keyword(s):  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chewe Kambole ◽  
Phil Paige-Green ◽  
Williams Kehinde Kupolati ◽  
Julius Musyoka Ndambuki

Purpose Most developing countries simply dump ferrochrome slag as waste which occupies huge areas of useful land. The purpose of this study is to underscore the significance of reusing ferrochrome slag as a sustainable and eco-friendly road aggregate material, with the added benefits of preventing possible environmental pollution and promoting sustainable mining of non-renewable construction materials. Design/methodology/approach Physical-mechanical characteristics were investigated using various South African National Standards test procedures. Chemical and mineralogical characteristics were evaluated using the X-ray fluorescence and the X-ray diffraction techniques, respectively. The toxicity characteristic leaching procedure test was used to evaluate the slag’s environmental suitability. Using two cement types, cement proportions of 1%, 2% and 3% of the slag aggregate weight mixed with optimum moisture content of the non-treated compacted slag were used to make lightly cemented ferrochrome slag aggregate (LCFSA) composites, subsequently tested for compressive strength. Findings Ferrochrome slag aggregates have excellent physical-mechanical characteristics that conform to international specifications for use in road base construction. The slag can be classified as non-hazardous solid waste. However, in acidic environments, some toxic elements may leach from the slag and pollute the environment. Optimum cement contents of 2.3% (CEM II) and 2.6% (CEM VB) can be mixed with the slag to produce LCFSA for road bases. Originality/value No research was found in literature on the use of LCFSA in road bases. This research, therefore, presents new data on mix design and strength properties of LCFSA as well as some physical-chemical characteristics of coarse ferrochrome slag aggregate.


Author(s):  
Ramzi Taha

Road rehabilitation and reconstruction generate large supplies of reclaimed asphalt pavement (RAP) aggregate, and recycling into asphalt paving mixtures is the predominant application. Cement kiln dust (CKD), also known as cement bypass dust, is a by-product material generated during production of portland cement. In Oman, where recycling of pavement materials is not practiced, a first attempt was made at combining two by-product materials for use in road construction. Conservation of natural resources and preservation of the environment are two benefits that could be gained by reusing waste materials. The potential use in road bases of CKD-stabilized RAP and RAP with virgin aggregate mixtures was investigated. Physical, compaction, and unconfined compressive strength tests were conducted on RAP and virgin aggregate blends of 100% to 0%, 90% to 10%, 80% to 20%, and 0% to 100%. Samples were prepared using CKD at 0%, 3%, 5%, 7%, 10%, 15%, and 20% and were cured for 3, 7, and 28 days in plastic bags at room temperature. Results indicate that the maximum dry density and unconfined compressive strength of RAP generally increase with addition of virgin aggregate and CKD. The moisture content-dry density curves for CKD-stabilized RAP aggregate mixtures did not show a distinctive peak similar to that of the 100% virgin aggregate blend. Longer curing periods will produce higher strength values. CKD content of 15% seems to be the optimum for achieving maximum strength.


Sign in / Sign up

Export Citation Format

Share Document