A new dual-mode wear model of abrasion–fatigue for plane (100Cr6)-cylinder (C45E4) steel pairs with fractal surfaces

2021 ◽  
pp. 1-19
Author(s):  
Wenbo Zhang ◽  
Wenjun Gong ◽  
Yunxia Chen ◽  
Mengwei Li
Wear ◽  
2019 ◽  
Vol 430-431 ◽  
pp. 327-339 ◽  
Author(s):  
Wenjun Gong ◽  
Yunxia Chen ◽  
Mengwei Li ◽  
Rui Kang

Author(s):  
X. Yin ◽  
K. Komvopoulos

A generalized abrasive wear model of a three-dimensional rough (fractal) surface sliding against a relatively softer material is presented. The model is based on a slip-line field of a rigid spherical asperity (or spherical wear particle) that plows through a soft surface, resulting in material removal by a microcutting process. The analysis yields a relationship of the abrasive wear coefficient in terms of the interfacial adhesion characteristics of the interacting surfaces, topography (fractal) parameters, elastic-plastic material properties, and applied normal load. Numerical results illustrate the effects of surface roughness and interfacial adhesion (lubrication effect) on the abrasive wear coefficient of fractal surfaces.


Author(s):  
X. Yin ◽  
K. Komvopoulos

A generalized adhesive wear model was derived for three-dimensional fractal surfaces in normal contact. A criterion for wear particle formation was derived based on the critical asperity contact area for fully plastic asperity deformation, taking into account the contribution of the adhesion force to the total normal load applied at the contact interface. The analysis yields a relationship of the adhesive wear coefficient in terms of total normal load (global interference), fractal parameters, elastic-plastic material properties, surface energies, material compatibility, and interfacial adhesion characteristics of the contacting rough surfaces. Numerical results of the wear coefficient of representative engineering material systems illustrate the roles of global interference and interfacial adhesion conditions (lubrication effect) in adhesive wear of surfaces in normal contact.


2009 ◽  
Vol E92-C (3) ◽  
pp. 288-295
Author(s):  
Kazunori YAMANAKA ◽  
Kazuaki KURIHARA ◽  
Akihiko AKASEGAWA ◽  
Masatoshi ISHII ◽  
Teru NAKANISHI

2016 ◽  
Vol 26 (4) ◽  
pp. 319-347 ◽  
Author(s):  
Han-Yu Deng ◽  
Feng Feng ◽  
Xiao-Song Wu

Author(s):  
Christer Fureby ◽  
J. Tegner ◽  
R. Farinaccio ◽  
Robert Stowe ◽  
D. Alexander

Sign in / Sign up

Export Citation Format

Share Document