One-Pot, Sequential Four-Component Synthesis of Benzo[a]chromeno[2,3-c]phenazine Derivatives Using SiO2–SO3H as an Efficient and Recoverable Catalyst Under Conventional Heating and Microwave Irradiation

2016 ◽  
Vol 38 (1) ◽  
pp. 92-101 ◽  
Author(s):  
Afshin Yazdani-Elah-Abadi ◽  
Razieh Mohebat ◽  
Malek-Taher Maghsoodlou ◽  
Reza Heydari
2007 ◽  
Vol 72 (8) ◽  
pp. 1014-1024 ◽  
Author(s):  
Pedro Cintas ◽  
Katia Martina ◽  
Bruna Robaldo ◽  
Davide Garella ◽  
Luisa Boffa ◽  
...  

The Huisgen 1,3-dipolar cycloaddition of azides and acetylenes catalyzed by Cu(I) salts, leading to 1,2,3-triazoles, is one of the most versatile "click reactions". We have developed a series of optimized protocols and new applications of this reaction starting from several substrates, comparing heterogeneous vs homogeneous catalysis, conventional heating vs microwave irradiation or simultaneous microwave/ultrasound irradiation. Both non-conventional techniques strongly promoted the cycloaddition (bromide → azide → triazole), that could be conveniently performed in a one-pot procedure. This was feasible even with such bulky molecules as functionalized β-cyclodextrins (β-CD), starting from 61-O-tosyl-β-CD or from heptakis[6-O-(tert-butyldimethylsilyl)]-21-O-propargyl-β-CD. "Greener" heterogeneous catalysis with charcoal-supported Cu(II) or Cu(I) (prepared under ultrasound) was advantageously employed.


ChemInform ◽  
2009 ◽  
Vol 40 (37) ◽  
Author(s):  
J. Venu Madhav ◽  
Y. Thirupathi Reddy ◽  
P. Narsimha Reddy ◽  
Peter A. Crooks ◽  
V. Naveen Kumar ◽  
...  

2020 ◽  
Vol 7 (1) ◽  
pp. 50-59
Author(s):  
Kantharaju Kamanna ◽  
S.Y. Khatavi ◽  
P.B. Hiremath

Background: Amide bond plays a key role in medicinal chemistry, and the analysis of bioactive molecular database revealed that the carboxamide group appears in more than 25% of the existing database drugs. Typically amide bonds are formed from the union of carboxylic acid and amine; however, the product formation does not occur spontaneously. Several synthetic methods have been reported for amide bond formation in literature. Present work demonstrated simple and eco-friendly amide bond formation using carboxylic acid and primary amines through in situ generation of O-acylurea. The reaction was found to be more efficient, faster reaction rate; simple work-up gave pure compound isolation in moderate to excellent yield using microwave irradiation as compared to conventional heating. Methods: Developed one-pot synthesis of amide compounds using agro-waste derived greener catalyst under microwave irradiation. Results: Twenty amide bond containing organic compounds are synthesized from carboxylic acid with primary amine catalyzed by agro-waste derived medium under microwave irradiation. First, the reaction involved carboxylic acid activation using EDC.HCl, which is the required base for the neutralization and coupling. The method employed natural agro-waste derived from banana peel ash (WEB) for the coupling gave target amide product without the use of an external organic or inorganic base. Conclusion: In the present work, we demonstrated that agro-waste extract is an alternative greener catalytic medium for the condensation of organic carboxylic acid and primary amine under microwave irradiation. The method found several advantages compared to reported methods like solventfree, non-toxic, cheaper catalyst, and simple reaction condition. The final isolated product achieved chromatographically pure by simple recrystallization and did not require further purification.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Harshita Sachdeva ◽  
Rekha Saroj ◽  
Diksha Dwivedi

A simple catalytic protocol for the synthesis of novel spiro[indoline-pyranodioxine] derivatives has been developed using ZnO nanoparticle as an efficient, green, and reusable catalyst. The derivatives are obtained in moderate to excellent yield by one-pot three-component reaction of an isatin, malononitrile/ethylcyanoacetate, and 2,2-dimethyl-1,3-dioxane-4,6-dione in absolute ethanol under conventional heating and microwave irradiation. The catalyst was recovered by filtration from the reaction mixture and reused during five consecutive runs without any apparent loss of activity for the same reaction. The mild reaction conditions and recyclability of the catalyst make it environmentally benign synthetic procedure.


Sign in / Sign up

Export Citation Format

Share Document