zno nanoparticle
Recently Published Documents


TOTAL DOCUMENTS

742
(FIVE YEARS 231)

H-INDEX

54
(FIVE YEARS 11)

2022 ◽  
Author(s):  
Monika Patel ◽  
Sunita Mishra ◽  
Ruchi Verma ◽  
Deep Shikha

Abstract Nanotechnology is a completely unique branch of technology that offers with substances in a very small size between (1-100 nm) with various crystal shapes which include spherical nanoparticles, flower shaped, Nano rods, Nano ribbons, and Nano platelets. Metals have ability to produce large number of oxides. These metal oxides play an major role in many areas of chemistry, physics, material science and food science. In this research, Zinc Oxide (ZnO) and Copper (II) oxide nanoparticles were synthesized via sol-gel process using zinc nitrate and copper (II) nitrate as precursor respectively. The characterization of CuO and ZnO nanoparticles was done by using various techniques. X-ray Diffraction (XRD) indicates the crystallinity and crystal size of CuO and ZnO nanoparticle. Fourier transform infrared spectroscopy (FT-IR) was used to get the infrared spectrum of the sample indicating composition of the sample which contains various functional groups. XRD result shows the particle size of CuO at highest peak 29.40140 was 61.25 nm and the particle size of ZnO at highest peak 36.24760 was 21.82 nm. FT-IR spectra peak at 594.56 cm-1 indicated characteristic absorption bands of ZnO nanoparticles and the broad band peak at 3506.9 cm-1 can be attributed to the characteristic absorption of O-H group. The analysis of FT-IR spectrum of CuO shows peaks at 602.09, 678.39, and 730.19cm−1 which refer to the formation of CuO. A broad absorption peak noticed at 3308.2 cm−1 attributed to O–H stretching of the moisture content.


Silicon ◽  
2022 ◽  
Author(s):  
T. Thendral Thiyagu ◽  
G. Gokilakrishnan ◽  
V. C. Uvaraja ◽  
T. Maridurai ◽  
V. R. Arun Prakash

Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 57
Author(s):  
Md Maruful Islam ◽  
Toshiyuki Yoshida ◽  
Yasuhisa Fujita

Various annealing atmospheres were employed during our unique thermal-diffusion type Ga-doping process to investigate the surface, structural, optical, and electrical properties of Ga-doped zinc oxide (ZnO) nanoparticle (NP) layers. ZnO NPs were synthesized using an arc-discharge-mediated gas evaporation method, followed by Ga-doping under open-air, N2, O2, wet, and dry air atmospheric conditions at 800 °C to obtain the low resistive spray-coated NP layers. The I–V results revealed that the Ga-doped ZnO NP layer successfully reduced the sheet resistance in the open air (8.0 × 102 Ω/sq) and wet air atmosphere (8.8 × 102 Ω/sq) compared with un-doped ZnO (4.6 × 106 Ω/sq). Humidity plays a key role in the successful improvement of sheet resistance during Ga-doping. X-ray diffraction patterns demonstrated hexagonal wurtzite structures with increased crystallite sizes of 103 nm and 88 nm after doping in open air and wet air atmospheres, respectively. The red-shift of UV intensity indicates successful Ga-doping, and the atmospheric effects were confirmed through the analysis of the defect spectrum. Improved electrical conductivity was also confirmed using the thin-film-transistor-based structure. The current controllability by applying the gate electric-field was also confirmed, indicating the possibility of transistor channel application using the obtained ZnO NP layers.


2021 ◽  
Author(s):  
Tong Mei ◽  
Shan Li ◽  
Shao-Hui Zhang ◽  
Yuanyuan Liu ◽  
Peigang Li

Abstract In this paper, a ε-Ga2O3 film/ZnO nanoparticle hybrid heterojunction deep ultraviolet (UV) photodetector is described for 254 nm wavelength sensing application. The constructed ε-Ga2O3/ZnO heterojunction photodetector can operate in dual modes which are power supply mode and self-powered mode. Under reverse 5 V bias with 254 nm light intensity of 500 μW/cm2, the photoresponsivity, specific detectivity and external quantum efficiency are 59.7 mA/W, 7.83×1012 Jones and 29.2%. At zero bias, the advanced ε-Ga2O3/ZnO photodetector performs decent self-powered photoelectrical properties with photo-to-dark current ratio of 1.28×105, on/off switching ratio of 3.22×104, rise/decay times of 523.1/31.7 ms, responsivity of 4.12 mA/W and detectivity of 2.24×1012 Jones. The prominent photodetection performance lays a solid foundation for ε-Ga2O3/ZnO heterojunction in deep UV sensor application.


Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 26
Author(s):  
Pawan Pathak ◽  
Hyoung Jin Cho

A layer of self-assembled 1-octadecanethiol was used to fabricate a palladium (Pd)/zinc oxide (ZnO) nanoparticle-based flexible hydrogen sensor with enhanced response and high selectivity at room temperature. A palladium film was first deposited using DC sputtering technique and later annealed to form palladium nanoparticles. The formation of uniform, surfactant-free palladium nanoparticles contributed to improved sensor response towards hydrogen gas at room temperature. The obtained sensor response was higher than for previously reported room temperature Pd/ZnO sensors. Furthermore, the use of the polymer membrane suppressed the sensor’s response to methane, moisture, ethanol, and acetone, resulting in the selective detection of hydrogen in the presence of the common interfering species. This study shows a viable low-cost fabrication pathway for highly selective room temperature flexible hydrogen sensors for hydrogen-powered vehicles and other clean energy applications.


2021 ◽  
Vol 13 (4) ◽  
pp. 1552-1562
Author(s):  
C. Mohanasundar ◽  
K. Ramamoorthy ◽  
K. R. Latha ◽  
P. Santhy ◽  
C. N. Chandrasekhar ◽  
...  

A critical stage of the plant's life cycle is germination and insufficient seedling emergence contributes to the lower productivity of finger millet. Priming improves seedling emergence, reduces stand establishment time, and improves seedling germination. There is a need to develop a new technology like Nanotechnology that can precisely detect and deliver the right amount of nutrients or other inputs to safe crops for the environment and maximising productivity. A field experiment was conducted during Kharif season to evaluate the response of effective farming practice for sole finger millet + greengram intercropping system under rainfed conditions to varied levels of bio-seed priming and foliar application of nanoparticles on crop growth and productivity. The results of the experiment revealed that finger millet (Eleusine coracana) intercropped with greengram (Vigna radiata) (2:1) had a significant level (<0.05) increase in growth and yield parameter of finger millet compared to sole finger millet. Application of Prosopis juliflora leaf extract 1 per cent alone + Foliar ZnO nanoparticle @ 500 ppm showed a significant level (<0.05) increase in growth and yield parameter like grain yield (3238.84 kg ha-1), finger millet equivalent yield (FMEY) (3483.84 kg ha-1) and straw yield (7393.83 kg ha-1) compared to Pogamia pinnata leaf extract 1% alone + Foliar ZnO nanoparticle @ 500 ppm. The present study mainly focussed on cropping system, bio seed priming, and foliar application of nano zinc oxide utilized during rainfed conditions to increase uniform germination, drought resistance and improve crop yield along with nutrient content in seeds.


2021 ◽  
Vol 12 (6) ◽  
pp. 7994-8002

This paper proposed an engineered silica-coated Fe3O4 with ZnO nanoparticle, prepared by a coprecipitation/Stöber method as a curcumin delivery system. To this end, the structural characterization of the nanocomposite was performed by Fourier transform infrared spectroscopy (FT-IR), ray diffraction (XRD), VSM, and TEM. The findings show that the synthesized nanocomposite has a semispherical structure with an average particle size of 50-70 nm and excellent magnetization properties (21.4 emu/g).


Sign in / Sign up

Export Citation Format

Share Document