On the Laplacians for Strong Product Graphs Based on Polyacene Graphs

Author(s):  
Jia-Bao Liu ◽  
Jiao-Jiao Gu ◽  
Sakander Hayat
2015 ◽  
Vol 31 (2) ◽  
pp. 261-268
Author(s):  
JUAN A. RODRIGUEZ-VELAZQUEZ ◽  
◽  
DOROTA KUZIAK ◽  
ISMAEL G. YERO ◽  
JOSE M. SIGARRETA ◽  
...  

For an ordered subset S = {s1, s2, . . . sk} of vertices in a connected graph G, the metric representation of a vertex u with respect to the set S is the k-vector r(u|S) = (dG(v, s1), dG(v, s2), . . . , dG(v, sk)), where dG(x, y) represents the distance between the vertices x and y. The set S is a metric generator for G if every two different vertices of G have distinct metric representations with respect to S. A minimum metric generator is called a metric basis for G and its cardinality, dim(G), the metric dimension of G. It is well known that the problem of finding the metric dimension of a graph is NP-Hard. In this paper we obtain closed formulae and tight bounds for the metric dimension of strong product graphs.


2014 ◽  
Vol 331 ◽  
pp. 43-52 ◽  
Author(s):  
Ismael González Yero ◽  
Marko Jakovac ◽  
Dorota Kuziak ◽  
Andrej Taranenko

2011 ◽  
Vol 31 (3) ◽  
pp. 493 ◽  
Author(s):  
A.P. Santhakumaran ◽  
S.V. Ullas Chandran

2016 ◽  
Vol 94 (6) ◽  
pp. 559-565 ◽  
Author(s):  
Shehnaz Akhter ◽  
Muhammad Imran

Topological descriptors are numerical parameters of a graph that characterize its topology and are usually graph invariant. In a QSAR/QSPR study, physicochemical properties and topological indices such as Randić, atom–bond connectivity, and geometric–arithmetic are used to predict the bioactivity of different chemical compounds. There are certain types of topological descriptors such as degree-based topological indices, distance-based topological indices, counting-related topological indices, etc. Among degree-based topological indices, the so-called atom–bond connectivity and geometric–arithmetic are of vital importance. These topological indices correlate certain physicochemical properties such as boiling point, stability, strain energy, etc., of chemical compounds. In this paper, analytical closed formulas for Zagreb indices, multiplicative Zagreb indices, harmonic index, and sum-connectivity index of the strong product of graphs are determined.


2015 ◽  
Vol 9 (1) ◽  
pp. 39-58 ◽  
Author(s):  
S. Barik ◽  
R.B. Bapat ◽  
S. Pati

Graph products and their structural properties have been studied extensively by many researchers. We investigate the Laplacian eigenvalues and eigenvectors of the product graphs for the four standard products, namely, the Cartesian product, the direct product, the strong product and the lexicographic product. A complete characterization of Laplacian spectrum of the Cartesian product of two graphs has been done by Merris. We give an explicit complete characterization of the Laplacian spectrum of the lexicographic product of two graphs using the Laplacian spectra of the factors. For the other two products, we describe the complete spectrum of the product graphs in some particular cases. We supply some new results relating to the algebraic connectivity of the product graphs. We describe the characteristic sets for the Cartesian product and for the lexicographic product of two graphs. As an application we construct new classes of Laplacian integral graphs.


2014 ◽  
Vol 92 (6) ◽  
pp. 1124-1134 ◽  
Author(s):  
S. Bermudo ◽  
L. De la Torre ◽  
A.M. Martín-Caraballo ◽  
J.M. Sigarreta

2018 ◽  
Vol 38 (1) ◽  
pp. 287
Author(s):  
Dorota Kuziak ◽  
Iztok Peterin ◽  
González Ismael Yero

2017 ◽  
Vol 17 (02) ◽  
pp. 1750007 ◽  
Author(s):  
ZHAO WANG ◽  
YAPING MAO ◽  
CHENGFU YE ◽  
HAIXING ZHAO

The super edge-connectivity [Formula: see text] of a connected graph G is the minimum cardinality of an edge-cut F in G such that every component of G − F contains at least two vertices. Denote by [Formula: see text] the strong product of graphs G and H. For two graphs G and H, Yang proved that [Formula: see text]. In this paper, we give another proof of this result. In particular, we determine [Formula: see text] if [Formula: see text] and [Formula: see text], where [Formula: see text] denotes the minimum edge-degree of a graph G.


10.37236/3271 ◽  
2013 ◽  
Vol 20 (3) ◽  
Author(s):  
Walter Carballosa ◽  
Rocío M. Casablanca ◽  
Amauris De la Cruz ◽  
José M. Rodríguez

If X is a geodesic metric space and $x_1,x_2,x_3\in X$, a geodesic triangle $T=\{x_1,x_2,x_3\}$ is the union of the three geodesics $[x_1x_2]$, $[x_2x_3]$ and $[x_3x_1]$ in $X$. The space $X$ is $\delta$-hyperbolic $($in the Gromov sense$)$ if any side of $T$ is contained in a $\delta$-neighborhood of the union of the two other sides, for every geodesic triangle $T$ in $X$. If $X$ is hyperbolic, we denote by $\delta (X)$ the sharp hyperbolicity constant of $X$, i.e., $\delta (X)=\inf\{\delta\geq 0: \, X \, \text{ is $\delta$-hyperbolic}\,\}\,.$ In this paper we characterize the strong product of two graphs $G_1\boxtimes G_2$ which are hyperbolic, in terms of $G_1$ and $G_2$: the strong product graph $G_1\boxtimes G_2$ is hyperbolic if and only if one of the factors is hyperbolic and the other one is bounded. We also prove some sharp relations between $\delta (G_1\boxtimes G_2)$, $\delta (G_1)$, $\delta (G_2)$ and the diameters of $G_1$ and $G_2$ (and we find families of graphs for which the inequalities are attained). Furthermore, we obtain the exact values of the hyperbolicity constant for many strong product graphs.


Sign in / Sign up

Export Citation Format

Share Document