LARGE EDDY SIMULATION OF THE EFFECTS OF INNER WALL ROTATION ON HEAT TRANSFER IN ANNULAR TURBULENT FLOW

2004 ◽  
Vol 46 (4) ◽  
pp. 323-341 ◽  
Author(s):  
Joon Sang Lee ◽  
Xiaofeng Xu ◽  
Richard H Pletcher
2020 ◽  
Vol 6 (4) ◽  
Author(s):  
N. Satish ◽  
K. Venkatasubbaiah

Abstract Pulsation and acceleration of liquid metal turbulent flow through a horizontal channel has been numerically studied using a large eddy simulation (LES) technique. The effect of inlet pulsation and acceleration on flow and heat transfer characteristics of low Prandtl number liquid metal flow have been investigated and reported here. Results have been presented for different Reynolds numbers, different amplitudes, and frequency with constant bottom wall thickness. The flow field is modeled as unsteady-state two-dimensional incompressible turbulent-forced convection flow. Turbulence is modeled using a LES technique. Two-dimensional unsteady-state heat conduction equation is solved to know the temperature distribution in the solid region. Finite difference method solver is developed for solving the governing equations using sixth-order accuracy of compact schemes. The average Nusselt number shows cyclic variation with respect to time in pulsation flows. The enhancement of heat transfer with pulsation at amplitude 0.4 and frequency 100 Hz is 6.51%. The rate of heat transfer increases in pulsation flow compared to quasi-steady flow. The inlet acceleration shows a significant effect on flow characteristics. The present results are compared with direct numerical simulation (DNS) results available in the literature and matching well with DNS data.


2016 ◽  
Vol 26 (3/4) ◽  
pp. 1069-1091 ◽  
Author(s):  
Zhou Jiang ◽  
Zuoli Xiao ◽  
Yipeng Shi ◽  
Shiyi Chen

Purpose – The knowledge about the heat transfer and flow field in the ribbed internal passage is particularly important in industrial and engineering applications. The purpose of this paper is to identify and analyze the performance of the constrained large-eddy simulation (CLES) method in predicting the fully developed turbulent flow and heat transfer in a stationary periodic square duct with two-side ribbed walls. Design/methodology/approach – The rib height-to-duct hydraulic diameter ratio is 0.1 and the rib pitch-to-height ratio is 9. The bulk Reynolds number is set to 30,000, and the bulk Mach number of the flow is chosen as 0.1 in order to keep the flow almost incompressible. The CLES calculated results are thoroughly assessed in comparison with the detached-eddy simulation (DES) and traditional large-eddy simulation (LES) methods in the light of the experimentally measured data. Findings – It is manifested that the CLES approach can predict both aerodynamic and thermodynamic quantities more accurately than the DES and traditional LES methods. Originality/value – This is the first time for the CLES method to be applied to simulation of heat and fluid flow in this widely used geometry.


Sign in / Sign up

Export Citation Format

Share Document