Flow and heat transfer characteristics of non-Newtonian fluid over an oscillating flat plate

Author(s):  
Ailian Chang ◽  
Kambiz Vafai ◽  
HongGuang Sun
2009 ◽  
Vol 131 (6) ◽  
Author(s):  
Suhil Kiwan ◽  
M. A. Al-Nimr

The convection heat transfer induced by a stretching flat plate has been studied. Similarity conditions are obtained for the boundary layer equations for a flat plate subjected to a power law temperature and velocity variations. It is found that a similarity solution exists only for a linearly stretching plate and only when the plate is isothermal. The analysis shows that three parameters control the flow and heat transfer characteristics of the problem. These parameters are the velocity slip parameter K1, the temperature slip parameter K2, and the Prandtl number. The effect of these parameters on the flow and heat transfer of the problem has been studied and presented. It is found that the slip velocity parameter affect both the flow and heat transfer characteristics of the problem. It is found that the skin friction coefficient decreases with increasing K1 and most of the changes in the skin friction takes place in the range 0<K1<1. A correlation between the skin friction coefficient and K1 and Rex has been found and presented. It is found that cf=23Rex−0.5(K1+0.64)−0.884 for 0<K1<10 with an error of ±0.8%. Other correlations between Nu and K1 and K2 has been found and presented in Eq. 28.


Sign in / Sign up

Export Citation Format

Share Document