slip parameter
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 37)

H-INDEX

11
(FIVE YEARS 2)

Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3291
Author(s):  
Abdul Samad Khan ◽  
He-Yong Xu ◽  
Waris Khan

This study presents the magnetized hybrid nanofluid flow with heat source/sink over an exponentially stretching/shrinking sheet. Slip conditions are implemented to analyze the hybrid nanofluid flow for both slip and no-slip conditions. Additionally, the hybrid nanofluid of alumina and copper (hybrid nanoparticles) with blood (base fluid) has been considered and discussed with both suction and injection parameters. The appropriate similarity variables are used to convert partial differential equations (PDEs) into ordinary differential equations (ODEs) and solved analytically with the help of the homotopy analysis method (HAM). The impact of different embedded parameters has been shown in the form of graphs and tables. The numerical values of skin friction and Nusselt number are presented in the form of Tables for both slip and no-slip cases. It is summarized that the upsurge of the velocity slip parameter and magnetic parameter increases the skin friction, while the rising of the thermal slip parameter and heat generation parameter decreases the Nusselt number.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1554
Author(s):  
Muhammad Shoaib ◽  
Muhammad Asif Zahoor Raja ◽  
Muhammad Touseef Sabir ◽  
Kottakkaran Sooppy Nisar ◽  
Wasim Jamshed ◽  
...  

The objective of this study is to explore the flow features and heat transfer properties of an MHD hybrid nanofluid between two parallel plates under the effects of joule heating and heat absorption/generation (MHD-HFRHT) by utilizing the computational strength of Levenberg–Marquardt Supervised Neural Networks (LM-SNNs). Similarity equations are utilized to reduce the governing PDEs into non-linear ODEs. A reference solution in the form of data sets for MHD-HFRHT flow is obtained by creating different scenarios by varying involved governing parameters such as the Hartman number, rotation parameter, Reynolds number, velocity slip parameter, thermal slip parameter and Prandtl number. These reference data sets for all scenarios are placed for training, validation and testing through LM-SNNs and the obtained results are then compared with reference output to validate the accuracy of the proposed solution methodology. AI-based computational strength with the applicability of LM-SNNs provides an accurate and reliable source for the analysis of the presented fluid-flow system, which has been tested and incorporated for the first time. The stability, performance and convergence of the proposed solution methodology are validated through the numerical and graphical results presented, based on mean square error, error histogram, regression plots and an error-correlation measurement. MSE values of up to the accuracy level of 1 × 10−11 established the worth and reliability of the computational technique. Due to an increase in the Hartmann number, a resistance was observed, resulting in a reduction in the velocity profile. This occurs as the Hartmann number measures the relative implication of drag force that derives from magnetic induction of the velocity of the fluid flow system. However, the Reynolds number accelerates in the velocity profile due to the dominating impact of inertial force.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Safia Akram ◽  
Maria Athar ◽  
Khalid Saeed ◽  
Taseer Muhammad ◽  
Mir Yasir Umair

The significance of partial slip on double diffusive convection on magneto-Carreau nanofluid through inclined peristaltic asymmetric channel is examined in this paper. The two-dimensional and directional flow of a magneto-Carreau nanofluid is mathematically described in detail. Under the lubrication technique, the proposed model is simplified. The solutions of extremely nonlinear partial differential equations are calculated using a numerical technique. Graphical data are displayed using Mathematica software and Matlab to examine how temperature, pressure rise, concentration, pressure gradient, velocity profile, nanoparticle volume fraction, and stream functions behave on emerging parameters. It is noticed that as the velocity slip parameter is increased, the axial velocity at the channel’s center increases. Additionally, near the boundary, opposite behavior is observed. The temperature, concentration, and nanoparticle profile drops by increasing thermal slip, concentration slip, and nanoparticle slip parameter.


Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1249
Author(s):  
Hasan Shahzad ◽  
Xinhua Wang ◽  
Muhammad Bilal Hafeez ◽  
Zahir Shah ◽  
Ahmed Mohammed Alshehri

The non-isothermal couple stress fluid inside a reverse roll coating geometry is considered. The slip condition is considered at the surfaces of the rolls. To develop the flow equations, the mathematical modelling is performed using conservation of momentum, mass, and energy. The LAT (lubrication approximation theory) is employed to simplify the equations. The closed form solution for velocity, temperature, and pressure gradient is obtained. While the pressure and flow rate are obtained numerically. The impact of involved parameters on important physical quantities such as temperature, pressure, and pressure gradient are elaborated through graphs and in tabular form. The pressure and pressure gradient decreases for variation of the couple stress parameter and velocity ratio parameter K. While the variation of the slip parameter increases the pressure and pressure gradient inside the flow geometry. Additionally, flow rate decreases for the variation of the slip parameter as fluid starts moving rapidly along the roller surface. The most important physical quantity which is responsible for maintaining the quality of the coating and thickness is flow rate. For variation of both the couple stress parameter and the slip parameter, the flow rate decreases compared to the Newtonian case, consequently the coating thickness decreases for the variation of the discussed parameter.


Author(s):  
Nurul Aisyah Johan ◽  
Syahira Mansur

In this work, the effect of dust particles and slips towards boundary layer flow of dusty nanofluid was investigated over the stretching horizontal sheet. Three type of nanoparticles; copper (Cu), aluminium oxide ( ) and titania ( ) were studied. The governing equations of flow and heat transfer were transformed into non-linear ordinary differential equations by using similarity transformation. Next, these equations were solved numerically by using the boundary value problem solver, bvp4c program of Matlab software. The effects of non-governing parameters including volume fraction of dust particles, volume fraction of nanoparticles, velocity slip parameter, and thermal slip parameter were computed, analysed, and discussed. Lastly, a comparison of present study with existing literature was performed and achieved excellent agreement. It is found that nanoparticles act as good thermal conductivity. Besides that, and show significant effect on velocity of fluid and dust phase.


Author(s):  
G. Sowmya ◽  
B. Saleh ◽  
R. J. Punith Gowda ◽  
R. Naveen Kumar ◽  
R. S. Varun Kumar ◽  
...  

The study is concerned with the heat transfer in a slip flow of a dusty fluid with the impact of a magnetic field and nonlinear thermal radiation. Furthermore, for the heat transfer process the Cattaneo–Christov heat flux model is used. Suitable similarity transformations are used to transform the governing equations. Later, shooting method and the Runge-Kutta Fehlberg's fourth fifth order (RKF-45) process are utilized to solve these reduced system of nonlinear ordinary differential equations. Impact of numerous involved parameters on the flow, thermal fields of both dust and fluid phase, skin friction and rate of heat transfer are visually plotted through graphs and discussed quantitatively. The significant outcomes drawn from the current study are that, the rise in value of the velocity slip parameter decreases the velocity profile but improves the thermal profile of both the phases. The growing values of curvature parameter intensify the flow and the thermal fields of both phases. The cumulative values of magnetic parameter and dust particle mass concentration parameter declines the velocity and thermal gradients of both phases. The thermal relaxation time parameter decays the temperature profile. The heat transfer rate is strengthened with the growing values of the curvature parameter, the velocity slip parameter, and radiation parameter.


2021 ◽  
Vol 16 ◽  
pp. 79-94
Author(s):  
M.S. Abu Zaytoon ◽  
Roberto Silva-Zea ◽  
M. H. Hamdan

Gravity-driven flow through an inclined channel over a semi-infinite porous layer is considered in order to obtain a modification to the usual Beavers and Joseph slip condition that is suitable for this type of flow. Expressions for the velocity, shear stress, volumetric flow rates, and pressure distribution across the channel are obtained together with an expression for the interfacial velocity. In the absence of values for the slip parameter when the flow is over a Forchheimer porous layer, this work provides a relationship between the slip parameters of the Darcy and Forchheimer layers. Expressions for the interfacial velocities in both cases are obtained. This original work is intended to provide baseline analysis and a benchmark with which more sophisticated types of flow, over porous layers in an inclined domain can be compared.


Author(s):  
Aamir Ali ◽  
Sana Mumraiz ◽  
Hafiz Junaid Anjum ◽  
Saleem Asghar ◽  
Muhammad Awais

Abstract The current research explores the slippage phenomenon in hydromagnetic peristaltic activity of a non-Newtonian fluid with porous media in an asymmetric channel. The analysis is performed under the influence of thermal radiation, Hall current, Joule heating and viscous dissipation. The problem is formulated with the assumption of small Reynolds number and large wavelength. Analytical solutions are achieved through perturbation technique and the impacts of involved influential parameters are examined through graphs. It is observed that the pressure gradient rises with fourth grade fluid parameter and decreases with increasing phase difference. The pressure rise increases in pumping regime and decreases in co-pumping regime for increasing magnetic field parameter, whereas it has opposite effects for hall parameter. It is also noted that the velocity drops in the middle of the channel, while it increases near the boundaries for growing slip parameter and magnetic field parameters and it has the opposite behavior for hall and permeability parameters. The slip parameter increases the temperature of the fluid and decreases the concentration. Also, in trapping phenomena, the bolus size reduces by enlarging Deborah parameter. The present research has profound use in biomedical science, polymer technology and artificial heart polishing.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Solomon Bati Kejela ◽  
Mitiku Daba ◽  
Abebe Girum

Analytical investigation of thermal radiation, Prandtl number, Eckert number, permeability parameter, magnetic field, velocity, and thermal slip effects on magnetohydrodynamic Hiemenz flow over a permeable plate with forced convection has been presented. Similarity variable conversion method has been applied to transmute the fundamental governing equations of the fluid dynamics in flow into a pair of nonlinear third-order ordinary differential equations and is analytically solved by the optimal homotopy asymptotic method (OHAM). The influences of several relevant physical parameters in the model on velocity and temperature of the fluid have been studied and analysed profoundly by use of graphs and tables. It is detected that, with mounting value of suction/blowing parameter and magnetic field parameter, the skin friction coefficient enhances. Likewise, it is seen that the Nusselt number increases with enhancing value of magnetic parameter. It is also witnessed that the velocity increases as the Eckert number, blowing/suction parameter, and permeability parameter increase, but it decays against magnetic field and velocity slip parameter. Moreover, the result reveals that the fluid temperature upsurges along with snowballing the radiant heat, magnetic field parameter, and the Eckert number. However, it descends against thermal slip parameter, Prandtl number, wall temperature exponent, and velocity slip parameter. A comparison with previous studies has been made, and the result shows an excellent agreement.


2021 ◽  
Vol 10 (1) ◽  
pp. 118-127
Author(s):  
Amit Parmar ◽  
Rakesh Choudhary ◽  
Krishna Agrawal

The present study explores the slip flow and heat transfer induced by a radially surface with MHD Carreau nanofluid. In addition, the effects of temperature jump, non-linear radiation and the dependent zero mass flux also taken into account. This study also considers the cross-diffusion effect on temperature and concentration governing profiles. Appropriate transformations are engaged in order to acquire nonlinear differential equations (ODEs) from the partial differential system, their solutions are obtained by Runge-Kutta 4th order with shooting scheme in MATLAB. The impact of pertinent flow parameters such as first and second order velocity slip parameter, temperature jump, magnetic parameter, heat source, radiation parameter, melting surface parameter, temperature ratio parameter on dimensionless velocity, temperature and concentration profiles achieved graphically as well as local skin friction, Nusselt number and Sherwood number are demonstrated in the form of Table. first order velocity slip parameter (slip1) on f′, Θ and Φ profile fields. With an increment in the velocity slip first order parameter (slip1) we have perceived a fall in the momentum boundary layer and concentration profiles and a growth in the fluid temperature field.


Sign in / Sign up

Export Citation Format

Share Document