Application of Micromagnetic Technique in Surface Grinding for Assessment of Surface Integrity

2009 ◽  
Vol 24 (4) ◽  
pp. 488-496 ◽  
Author(s):  
M. Vashista ◽  
S. Ghosh ◽  
S. Paul
2018 ◽  
Vol 5 (5) ◽  
pp. 171906 ◽  
Author(s):  
Dinesh Kumar Patel ◽  
Deepam Goyal ◽  
B. S. Pabla

Surface integrity has attracted the attention of researchers for improving the functional performance of engineering products. Improvement in surface finish, one of the important parameters in surface integrity, has been attempted by researchers through different processes. Grinding has been widely used for final machining of components requiring smooth surfaces coupled with precise tolerances. Proper selection of grinding wheel material and grade with grinding parameters can result in an improved surface finish and improved surface characteristics. The present work reports the study of the effect of grinding parameters on surface finish of EN8 steel. Experiments were performed on surface grinding and cylindrical grinding for optimization of grinding process parameters for improved surface finish. Grinding wheel speed, depth of cut, table feed, grinding wheel material and table travel speed for surface grinding operation, and work speed for cylindrical grinding operation were taken as the input parameters with four types of grinding wheels (Al 2 O 3 of grades K and L, and white alumina of grades J and K). The surface roughness was taken as an output parameter for experimentation. The grinding wheel material and grade have been observed to be the most significant variables for both cylindrical grinding and surface grinding. Surface roughness in the case of surface grinding is better compared to that of cylindrical grinding, which can be attributed to vibrations produced in the cylindrical grinding attachment. Surface roughness ( R a ) values of 0.757 µm in cylindrical grinding and 0.66 µm in surface grinding have been achieved.


2013 ◽  
Vol 589-590 ◽  
pp. 252-257
Author(s):  
Ming Chen ◽  
Da Peng Dong ◽  
Guo Qiang Guo ◽  
Qing Long An

This paper investigates the surface integrity of premium thread gauge material 9Mn2V in reciprocating surface grinding using SG abrasive, which includes metallographic structure for grinding crack, specific grinding energy and surface residual stress. The specific grinding energy and the surface residual stress can be reduced after the workpiece gets tempered, so small grinding depth can lead to the generation of cracks when the workpiece is not tempered. Otherwise, the depth of heat affected zone increases with the increase of grinding depth, but not increases proportionally. After 9Mn2V is tempered, the occurrence of grinding burn and grinding cracks can be improved.


Sign in / Sign up

Export Citation Format

Share Document