scholarly journals Optimization of parameters in cylindrical and surface grinding for improved surface finish

2018 ◽  
Vol 5 (5) ◽  
pp. 171906 ◽  
Author(s):  
Dinesh Kumar Patel ◽  
Deepam Goyal ◽  
B. S. Pabla

Surface integrity has attracted the attention of researchers for improving the functional performance of engineering products. Improvement in surface finish, one of the important parameters in surface integrity, has been attempted by researchers through different processes. Grinding has been widely used for final machining of components requiring smooth surfaces coupled with precise tolerances. Proper selection of grinding wheel material and grade with grinding parameters can result in an improved surface finish and improved surface characteristics. The present work reports the study of the effect of grinding parameters on surface finish of EN8 steel. Experiments were performed on surface grinding and cylindrical grinding for optimization of grinding process parameters for improved surface finish. Grinding wheel speed, depth of cut, table feed, grinding wheel material and table travel speed for surface grinding operation, and work speed for cylindrical grinding operation were taken as the input parameters with four types of grinding wheels (Al 2 O 3 of grades K and L, and white alumina of grades J and K). The surface roughness was taken as an output parameter for experimentation. The grinding wheel material and grade have been observed to be the most significant variables for both cylindrical grinding and surface grinding. Surface roughness in the case of surface grinding is better compared to that of cylindrical grinding, which can be attributed to vibrations produced in the cylindrical grinding attachment. Surface roughness ( R a ) values of 0.757 µm in cylindrical grinding and 0.66 µm in surface grinding have been achieved.

2009 ◽  
Vol 407-408 ◽  
pp. 577-581
Author(s):  
Shi Chao Xiu ◽  
Zhi Jie Geng ◽  
Guang Qi Cai

During cylindrical grinding process, the geometric configuration and size of the edge contact area between the grinding wheel and workpiece have the heavy effects on the workpiece surface integrity. In consideration of the differences between the point grinding and the conventional high speed cylindrical grinding, the geometric and mathematic models of the edge contact area in point grinding were established. Based on the models, the numerical simulation for the edge contact area was performed. By means of the point grinding experiment, the effect mechanism of the edge contact area on the ground surface integrity was investigated. These will offer the applied theoretic foundations for optimizing the point grinding angles, depth of cut, wheel and workpiece speed, geometrical configuration and size of CBN wheel and some other grinding parameters in point grinding process.


Author(s):  
Nguyen Hong Son ◽  
Do Duc Trung

In this paper, the analysis on the effects of cutting parameters on surface roughness of workpieces in surface grinding has been conducted. Experimental SUJ2 steel grinding process is made with CBN grinding wheel. The tests is made on an APSG-820/2A surface grinder. The Box- Behnken method has been used to design experiments. Minitab 16 statistical software has been used to analyze ANOVA test results. The results show that the feed-rate has the greatest effect on surface roughness, followed by the least effects of velocity of workpiece, depth of cut on surface roughness. The interaction between velocity of workpiece and depth of cut has the greatest effect on surface roughness, followed by the effects of the interaction between the feed-rate and depth of cut, the interaction between velocity of workpiece and the feed-rate has insignificant effects on surface roughness. This study also shows the value range of some cutting parameters for processing surface of workpiece with small roughness. Finally, a regression model of surface roughness has been established in this study.


2011 ◽  
Vol 264-265 ◽  
pp. 1118-1123
Author(s):  
Pradip Kumar Pal ◽  
Asish Bandyopadhyay ◽  
Ramesh Rudrapati

Cylindrical grinding is an efficient and useful method of achieving good dimensional accuracy and fine finish. Very often one of the main objectives of grinding process is to obtain very good surface finish. The present investigation takes into account the effects of common grinding parameters on surface finish obtained in cylindrical grinding. The material selected is mild steel. The grinding wheel dimensions and its specification are kept in-varied. Grinding parameters like in-feed, longitudinal feed and work speed have been varied at several levels. Surface finish parameter (Ra) has been measured and noted for evaluation of surface finish, by using the instrument Talysurf. These data have been analyzed, interpreted and discussed in the context of varied conditions of cylindrical traverse cut grinding. Apart from identifying relationships between process parameters and surface finish through graphical presentations, a number of techniques (Full Factorial Design, Response Surface Methodology (RSM) and MATLAB) have been applied on the experimental data to arrive at some conclusive remarks. The paper effectively shows how selection of process parameters may yield desirable surface finish.


2010 ◽  
Vol 102-104 ◽  
pp. 733-737
Author(s):  
Ju Dong Liu ◽  
Jie Zhen Zhuang ◽  
Xi Lin Zhang ◽  
Zhi Long Xu

On the basis of the cylindrical grinding-hardening test, the influences of the grinding parameters on surface hardened layer were studied. The result shows that when ap≤0.2mm, there is an unhardened area exist in cylindrical grinding hardened workpiece. When ap>0.2mm, there is a tempered area exist in cylindrical grinding hardened workpiece due to the action of grinding heat during cut-in and cut-out of grinding wheel. When depth of cut increases, or feed speed decreases, the hardened layer depth increases accordingly. In the practical application, the satisfactory quality of the cylindrical grinding hardened layer can be obtained through reasonable combination of ap and vw.


2021 ◽  
pp. 2150107
Author(s):  
MENDERES KAM ◽  
UFUK KABASAKALOĞLU

Cylindrical grinding operation is an important metal cutting process used as a finish process to achieve the surface quality and dimensional stability of the products. In this context, experimental work and statistical analysis in researches contribute to improve product quality of manufactured parts. Tempered steels are widely used for automotive components and manufacturing applications. The objective of this study is to analyze the surface roughness (Ra) values of cryogenically (cryo) treated and tempered steels in cylindrical grinding operation. According to the grinding experiments created by the Taguchi method, grinding wheels (Al2O3 and SiC), heat treated steel samples (HT, CT24, and CT36) and depth of cut (50, 100, and 150[Formula: see text][Formula: see text]m) were selected to determine the optimum surface roughness values of these steels. The results showed that significant improvements in Ra values of cryo-treated and tempered steels were observed. The lowest Ra values were obtained in cryo-treated sample (CT36) with SiC grinding wheel and depth of cut (50[Formula: see text][Formula: see text]m).


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Sankar Ganesh S ◽  
Thirumal P ◽  
Anbarasu M

The main objective of this study is to optimize the cylindrical grinding parameters that can be utilized to predict optimal grinding parameters to achieve minimum surface roughness of a material. A SS 317L Austentic steel round rod of 80 mm x 168 mm was considered for cylindrical grinding in this study. Cutting speed, depth of cut and feed rate were chosen as input variables while Surface roughness (Ra) selected as output response. An L9 orthogonal array was selected for this study and S/N ratios were analyzed to study the surface roughness characteristics. Nine experiments were conducted in the surface grinding machine with different values of input parameters obtained from the orthogonal array. The surface roughness values were optimized in the optimization software (Minitab version 17) and the optimal solution was obtained for minimum response. Minimum surface roughness is achieved with 100 rpm cutting speed, 0.03 mm depth of cut and 1 mm/s feed rate. The confirmation experiments were conducted for the optimal solution obtained from Taguchi experiment and the results are verified.


2007 ◽  
Vol 24-25 ◽  
pp. 97-102 ◽  
Author(s):  
Shi Chao Xiu ◽  
Chang He Li ◽  
Guang Qi Cai

There are lower grinding force and temperature in quick-point grinding process because of the higher grinding speed and the less depth of cut, especially the point contact between the grinding wheel and the workpiece due to the point grinding angles. Thus it can achieve better surface finishing process in grinding cylindrical surface. Since the point grinding model is different from the conventional cylindrical grinding in theory, the surface roughness is in relation to the point-grinding angles greatly besides the grain granularity, depth of cut, grinding speed and axial feeding rate like the conventional cylindrical grinding process. Based on the theoretical studies on the surface roughness in the process, the surface finishing experiments and measures at the various grinding parameters were performed. The experimental results show that the process parameters, such as point-grinding angles, depth of cut, grinding speed and axial feeding rate, must be controlled reasonably for the higher surface finishing demand in quick-point grinding process.


2020 ◽  
Vol 4 (2) ◽  
pp. 59 ◽  
Author(s):  
David Adeniji ◽  
Julius Schoop ◽  
Shehan Gunawardena ◽  
Craig Hanson ◽  
Muhammad Jahan

Thermoplastic materials hold great promise for next-generation engineered and sustainable plastics and composites. However, due to their thermoplastic nature and viscoplastic material response, it is difficult to predict the properties of surfaces generated by machining. This is especially problematic in micro-channel machining, where burr formation and excessive surface roughness lead to poor component-surface integrity. This study attempts to model the influence of size effects, which occur due to the finite sharpness of any cutting tool, on surface finish and burr formation during micro-milling of an important thermoplastic material, polycarbonate. Experimental results show that the depth of cut does not affect either surface finish or burr formation. A proposed new sideflow model shows the dominant effect of cutting-edge radius and feed rate on surface finish, while tool edge roughness, coating and feed rate have the most pronounced influence on burr formation. Overall, a good agreement between the experimental data and the proposed size effect model for the machining of thermoplastic material was found. Based on these results, tool geometry and process parameters may be optimized for improved surface integrity of machined thermoplastic components.


2020 ◽  
Vol 34 (22n24) ◽  
pp. 2040135
Author(s):  
Phi-Trong Hung ◽  
Hoang-Tien Dung ◽  
Nguyen-Kien Trung ◽  
Truong-Hoanh Son

The grinding process of Titanium (Ti) alloys is extremely difficult as the cutting temperature is much higher than other machining processes due to the low thermal conductivity, high chemical reactivity, and rapid work hardening during machining of Ti alloys. This research investigates the effect of technology parameters on the surface roughness in the surface grinding of Ti–6Al–4V (Ti64) alloy with resinoid cBN grinding wheel. The experimental results show that the surface roughness is significantly affected by the feed rate, depth of cut (DOC) and cooling condition. Increasing feed rate or DOC all provides the higher surface roughness. The surface roughness obtained in the wet grinding is higher than those of the dry cutting. The scanning electron microscopy (SEM) images of Ti64 surfaces show that the machining surface with fewer defects can be produced with wet grinding process.


2011 ◽  
Vol 271-273 ◽  
pp. 34-39 ◽  
Author(s):  
Ilhan Asiltürk ◽  
Levent Çelik ◽  
Eyüb Canli ◽  
Gürol Önal

Grinding is a widely used manufacturing method in state of art industry. By realizing needs of manufacturers, grinding parameters must be carefully selected in order to maintain an optimum point for sustainable process. Surface roughness is generally accepted as an important indicator for grinding parameters. In this study, effects of grinding parameters to surface roughness were experimentally and statistically investigated. A complete factorial experimental flow was designed for three level and three variable. 62 HRC AISI 8620 cementation steel was used in grinding process with 95-96% Al2O3 grinding wheel. Surface roughness values (Ra, Rz) were measured at the end of process by using depth of cut, feed rate and workpiece speed as input parameters. Experimental results were used for modeling surface roughness values with linear, quadric and logarithmic regressions by the help of MINITAB 14 and SPSS 16 software. The best results according to comparison of models considering determination coefficient were achieved with quadric regression model (84.6% for Ra and 89% for Rz). As a result, a reliable model was developed in grinding process which is a highly complex machining operation and depth of cut was determined as the most effective parameter on grinding by variance analysis (ANOVA). Obtained theoretical and practical acquisitions can be used in various areas of manufacturing sector in the future.


Sign in / Sign up

Export Citation Format

Share Document