Synthesis of LiMn2O4 via high-temperature ball milling process

2017 ◽  
Vol 32 (16) ◽  
pp. 1856-1860 ◽  
Author(s):  
Shudong Geng ◽  
Shujiang Geng ◽  
Yuchun Zhai
2020 ◽  
Vol 9 (1) ◽  
pp. 558-567 ◽  
Author(s):  
Mengya Ye ◽  
Jiahui Pan ◽  
Zhan Guo ◽  
Xiaoyu Liu ◽  
Yu Chen

AbstractCdS/TiO2 composite photocatalysts were made by the method of secondary ball milling at different ball milling speeds, milling time, and material ratios. After the secondary ball milling process, parts of the samples were calcined at high temperatures. X-ray diffraction (XRD) and UV-Vis diffuse reflectance spectroscopy (DRS) were used to observe the powder particle size, structural defect, bandgap, and absorption spectrum of the samples. Combined with the observation results, the effects of ball milling speed, time, material ratio, and high-temperature calcination on the photocatalytic performance of CdS/TiO2 composite samples were analyzed. Furthermore, the methyl orange (MO) was chosen to simulate pollutants, and the photocatalytic degradation rate of CdS/TiO2 composite photocatalysts for MO was evaluated under sunlight and UV irradiation conditions. The photocatalytic degradation efficiency of CdS/TiO2 photocatalyst under UV irradiation is much higher than that under sunlight irradiation. The experimental results reveal that secondary ball milling can effectively promote the formation of CdS/TiO2 composite nanostructure and the high-temperature calcination can reduce the bandgap width, which makes the samples easier to be excited. When the ball milling speed, time, and material ratio were respectively 400 rpm, 10 h, 25:75, and then calcined at high temperature, after 2 h of irradiation under UV light, CdS/TiO2 composite photocatalysts exhibited maximum photocatalytic degradation efficiency of 57.84%.


2021 ◽  
Vol 217 (1) ◽  
pp. 255-264
Author(s):  
Xiaomeng Zhu ◽  
Xiaolan Cai ◽  
Shuang Zhang ◽  
Lei Wang ◽  
Xudong Cui

Author(s):  
Fenglin Wang ◽  
Yunping Li ◽  
Xiandong Xu ◽  
Yuichiro Koizumi ◽  
Kenta Yamanaka ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
Haimei Li ◽  
Xianglong Li ◽  
Denghui Wang ◽  
Siyuan Zhang ◽  
Wenqiang Xu ◽  
...  

A silicon nanoplate-decorated graphite design is developed for lithium battery anodes via a simple ball milling process. The resultant silicon-graphite electrodes show high cyclic stability with high capacity, superior rate...


RSC Advances ◽  
2016 ◽  
Vol 6 (15) ◽  
pp. 12657-12668 ◽  
Author(s):  
Pranita Dash ◽  
Tapan Dash ◽  
Tapan Kumar Rout ◽  
Ashok Kumar Sahu ◽  
Surendra Kumar Biswal ◽  
...  

Graphene oxides (GO) with different degrees of oxidation have been prepared by an in-house designed horizontal high energy planetary ball milling process.


2018 ◽  
Vol 446 ◽  
pp. 200-205 ◽  
Author(s):  
Lei Fang ◽  
Tianli Zhang ◽  
Hui Wang ◽  
Chengbao Jiang ◽  
Jinghua Liu

Sign in / Sign up

Export Citation Format

Share Document