ball milling process
Recently Published Documents


TOTAL DOCUMENTS

202
(FIVE YEARS 52)

H-INDEX

28
(FIVE YEARS 3)

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 130
Author(s):  
Ziyang Xiu ◽  
Boyu Ju ◽  
Cungao Duan ◽  
Sen Fu ◽  
Ningbo Zhang ◽  
...  

Graphene has extremely high theoretical strength and electrothermal properties, and its application to Cu-based composites is expected to achieve a breakthrough in the performance of existing composites. As a nano-reinforced body, graphene often needs a long time of ball milling to make it uniformly dispersed, but the ball milling process inevitably brings damage to the graphene, causing the performance of the composite to deviate from expectations. Therefore, this paper uses CH4 as a carbon source to repair graphene through a CVD process to prepare low-damage graphene/Cu composites. The process of graphene defect generation was studied through the ball milling process. The effects of defect content and temperature on the graphene repair process were studied separately. The study found that the graphene defect repair process, the decomposition process of oxygen-containing functional groups, and the deposition process of active C atoms existed simultaneously in the CVD process. When the repair temperature was low, the C atom deposition process and the oxygen-containing functional group decomposition process dominated. In addition, when the repair temperature is high, the graphene defect repair process dominated. 3 wt% graphene/Cu composites were prepared by pressure infiltration, and it was found that the bending strength was increased by 48%, the plasticity was also slightly increased, and the thermal conductivity was increased by 10–40%. This research will help reduce graphene defects, improve the intrinsic properties of graphene, and provide theoretical guidance for the regulation of C defects in composites.


2021 ◽  
Vol 11 (20) ◽  
pp. 9420
Author(s):  
Dimitra Kourtidou ◽  
Konstantinos Tsongas ◽  
Maria-Eirini Grigora ◽  
Dimitrios Tzetzis ◽  
Dimitrios N. Bikiaris ◽  
...  

Short-chain branched-Polyethylene (SCB-PE) is commonly utilized in hot and cold piping systems due to its high-temperature resistance. SCB-PE nanocomposites using graphene nanoplatelets (GNPs) as a reinforcing filler were synthesized in this work. The effect of the filler’s content and the ball-milling process on nanocomposites’ structure, tensile and shear properties was studied. Two series of nanocomposites have been prepared, one with and one without the ball-milling as a premixing step prior to the melt-mixing process. The ball-milling process induced a lower crystallinity degree of the SCB-PE nanocomposites than their solely melt-mixed counterpart. The tensile properties of the ball-milled samples presented a more profound enhancement with increasing filler content. The Ji and modified Halpin-Tsai micromechanical models were best fit to describe the experimental elastic modulus of the solely melt-mixed and the ball-milled nanocomposites, respectively. Fractography studies suggested that the detachment of the filler particles from the polymer matrix is avoided for lower GNPs contents of the ball-milled samples. Shear tests revealed that the shear strength increased and ductility decreased with increasing filler content in any case. The ball-milling process resulted in SCB-PE nanocomposites with superior mechanical properties compared to their solely melt-mixed counterparts.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1597
Author(s):  
Junaidi Syarif ◽  
Yudha Pratesa ◽  
Yudi Prasetyo ◽  
Sri Harjanto

Carbon-containing Fe-Mn alloys have been developed for the materials for stent application. The alloys fabricated by the powder metallurgy route retain a significant amount of porosity and require a longer sintering time. In this study, the corrosion behavior and cytotoxicity of FeMnC alloy fabricated by powder metallurgy were investigated. The ball-milling process was applied to increase the sample density. Mn content was set to 25 or 35 wt.%, while 1 wt.% carbon was added to all samples. The austenite stability was independent of porosity and the ball-milling process, whereas hardness had a strong dependence on porosity and the ball-milling process. The corrosion resistance of FeMnC alloy depends mainly on the porosity rather than Mn content. The concentration of Fe ions was higher than that of Mn ions in all immersion times in the Ringer’s lactate solution. The released metallic ion concentration rate is also dependent on the porosity of the sample rather than Mn content. However, the ion concentration was lower than the upper intake limit. The extract of FeMnC alloy in Ringer’s lactate solution reduced cell viability. The ball-milled (BM) FeMnC alloys showed higher cell viability than the non-BM sample. However, the FeMnC alloy shows the same level of biocompatibility as SS316L. This result indicates that the FeMnC alloy has a suitable corrosion behavior and proven biocompatibility for biodegradable materials.


Author(s):  
Pandiyarasan Veluswamy ◽  
Saravanan Subramanian ◽  
Muhmood ul Hassan ◽  
Cafer T. Yavuz ◽  
Ho Jin Ryu ◽  
...  

2021 ◽  
Author(s):  
Hossein Ahmadian

Abstract The effects of multi-walled carbon nano-tubes (MWCNTs) and the ball milling parameters on the mechanical properties of the Al-Mg alloy powders were investigated. Three different composite powders were synthesized through ball-milling process at different time and milling rates. The microstructural and phase analyses were carried out via scanning electron microscopy and X-ray diffraction spectroscopy, respectively. The results indicated that increasing the ball-milling time and rate would lead to the formation of finer particles, which consequently intensifies the plastic deformation and then, results in lower crystallite size. The morphological investigations indicated that while the MWCNTs agglomerates in lower milling rates, increased milling rate not only improve the distribution of the MWCNTs, but also decreases the length of the nano-tubes and promotes their diffusion into Al-Mg matrix. The formation of Al-Mg intermetallic phases through the ball-milling process of the composite powders was also confirmed via microstructural investigations.


Sign in / Sign up

Export Citation Format

Share Document