Changing role of bone marrow examination in the diagnosis of hematological malignancies

2018 ◽  
Vol 59 (9) ◽  
pp. 2018-2020 ◽  
Author(s):  
Surender Juneja ◽  
David Westerman
Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3702-3702
Author(s):  
Ken Ishiyama ◽  
Chiharu Sugimori ◽  
Hirohito Yamazaki ◽  
Akiyoshi Takami ◽  
Shinji Nakao

Abstract Some patients with aplastic anemia (AA) and approximately 40% of patients with refractory anemia (RA) of myelodysplastic syndrome exhibit karyotypic abnormalities in bone marrow dividing cells. Although some of the patients undergo evolution to acute myeloid leukemia (AML), others follow a clinical course similar to AA patients without chromosomal abnormalities. Except for several abnormalities such as −7 and 5q-, the clinical significance of such chromosomal abnormalities in bone marrow failure patients remains unclear. We recently developed a reliable HUMARA assay capable of detecting a clonal population in granulocytes which constitutes 30% or more of total granulocytes (Blood. 2003;102:1211–1216). Studying correlation between chromosomal abnormalities and the presence of clonality may help in understanding the pathogenetic role of chromosomal abnormalities in AA and RA. We thus analyzed 50 acquired AA and 28 RA female patients who were heterozygous for the HUMARA gene. Chromosomal abnormalities such as add(5)(q13), 9q–9q+ and del(7)(q14q22) were found in 8% of AA and 21% of RA patients. Clonality was detected in 38% of AA patients and 39% of RA patients. Incidence of chromosomal abnormalities in patients with clonality (27%) was higher than that in patients without clonality (4%, p<0.01). In two AA patients who respectively exhibited add(5)(q13) in 10% and +8 in 38% dividing cells, clonality was not detected and these abnormal clones became undetectable at the time of subsequent bone marrow examination. Clonality was detected in the other 2 AA patients respectively exhibiting 9q–9q+ in 40% and del(7)(q14q22) in 25% dividing cells, and in all 5 RA patients respectively exhibiting +8 in 10%, del(5)(q13q31), dup(1)(q32q12) in 90%, del(5)(q13), add(11)(q23), inv(9) in 65% and X,-X in 100% of dividing cells. None of the 50 AA patients including 2 patients with clonality and chromosomal abnormalities underwent evolution to AML during 2-year follow up while one of 28 RA patients who exhibited del(5)(q13q31) progressed to AML. The proportion of clonal granulocytes in total granulocytes estimated by the HUMARA assay remained unchanged in most patients with clonality except for the transformed one. These data indicate that the chromosomal abnormality in bone marrow dividing cells is not necessarily associated with presence of clonal granulocyte population in peripheral blood and that detection of clonality in granulcytes in bone marrow failure patients with chromosomal abnormalities of indefinite significance is useful in predicting prognosis of these patients.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2304-2304 ◽  
Author(s):  
Teresa McQueen ◽  
Marina Konopleva ◽  
Michael Andreeff

Abstract In hematological malignancies, there are reciprocal interactions between leukemic cells and cells of the bone marrow (BM) microenvironment such as mesenchymal stem cells (MSC). It is speculated that specific BM niches may provide a sanctuary for subpopulations of leukemic cells to evade chemotherapy-induced death and allow acquisition of a drug-resistant phenotype. In this study, we compared anti-leukemia effects of Ara-C and various signal transduction and apoptosis inhibitors in a co-culture system of primary AML and human bone marrow-derived MSC. AML blasts from 11 primary AML samples with high (&gt;70%) blast count were co-cultured with MSC for 24 hours, after which they were exposed to the indicated concentrations of inhibitors for 48–96 hrs. Concentrations were selected on the basis of preliminary cell line studies which determined efficient inhibition of drug targets. Induction of apoptosis was analyzed by Annexin V flow cytometry after gating on the CD90 APC(−) (non-MSC) population. MSC protected leukemic blasts from spontaneous apoptosis in all 11 samples studied (mean annexinV positivity, 49.5±7.2% vs 25.3±4.8%, p&lt;0.001) and from Ara-C-induced cytotoxicity in 6 out of 11 samples (p=0.02). No difference in the degree of protection was noted when MSC from older vs. younger donors were used (not shown). Co-culture of leukemic cells with MSC resulted in significant (p&lt;0.03) suppression of inhibitor-induced apoptosis for all agents tested (Table 1), however PI3K/AKT inhibitors seemed to overcome MSC-mediated resistance. In addition, specific inhibitors of Bcl-2 and MDM2 induced apoptosis not only in suspension, but also in the MSC co-culture system, while Raf-1/MEK inhibitors were less effective. The AKT inhibitor A443654 caused apoptosis induction not only in leukemic cells, but also in MSC, which likely accounted for its high efficacy in stromal co-cultures (53±6% annexin V+). In a different study (Tabe et al, ASH 2005), we report that interactions of leukemic and BM stromal cells result in the activation of PI3K/ILK/AKT signaling in both, leukemic and stromal cells. We therefore propose that disruption of these interactions by specific PI3K/AKT inhibitors represents a novel therapeutic approach to eradicate leukemia in the BM microenvironment via direct effects on leukemic cells and by targeting activated BM stromal cells. Furthermore, Bcl-2 and MDM2 inhibitors appear to retain their efficacy in stroma-cocultured AML cells, while the efficacy of chemotherapy and Raf/MEK inhibitors in these conditions may be reduced. Further studies are aimed at the elucidation of the role of the BM microenvironment and its ability to activate specific signaling pathways in the pathogenesis of leukemias and on efforts to disrupt the MSC/leukemia interaction (Zeng et al, ASH 2005). Focus on this stroma-leukemia-stroma crosstalk may result in the development of strategies that enhance the efficacy of therapies in hematological malignancies and prevent the acquisition of a chemoresistant phenotype. Table 1. Leukemia Cell Apoptosis in a MSC/AML Co-Culture System Target Bcl-2/XL MDM2 PI3K AKT Raf-1 MEK Apoptosis was determined as percentage of Annexin V(+)CD90(−) cells, and calculated by the formula: % specific apoptosis = (test − control) x 100 / (100 − control). Compound, concentration Ara-C, 1 μM ABT-737, 0.1 μM Nutlin-3A, 2.5 μM LY294002, 10 μM A443654, 1 μM BAY43-9006, 2.5 μM CI1040, 3 μM AML 28±7 69±7 45±7 53.8±13.3 75±7 35±11 27±11 AML + MSC 16±4 38±6 28±6 31.2±6.9 53±6 18±8 15±5


Author(s):  
Donald H. Mahoney ◽  
L.C. Schreuders ◽  
Mary V. Gresik ◽  
Kenneth L. McClain

2021 ◽  
pp. 1-6
Author(s):  
Eveline Vancraeynest ◽  
Marleen Renard ◽  
Thomas Tousseyn ◽  
Christophe M. Deroose ◽  
Anne Uyttebroeck ◽  
...  

2017 ◽  
Vol 69 (2) ◽  
pp. 1889-1894
Author(s):  
Hanan Mohammed Eisa ◽  
Mostafa Mahmoud Gamal El Deen ◽  
Yosra Abdelzaher Abdullah

1990 ◽  
Vol 116 (6) ◽  
pp. 919-920 ◽  
Author(s):  
Ammar Hayani ◽  
Donald H. Mahoney ◽  
Donald J. Fernbach

2002 ◽  
Vol 24 (4) ◽  
pp. 221-223 ◽  
Author(s):  
D. Gómez-Almaguer ◽  
G.J. Ruiz-Argüelles ◽  
B. López-MartÍnez ◽  
E. Estrada ◽  
E. Lobato-Mendiza´bal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document