Proximate Composition, Nutritional Lipid Quality, and Health Indices of Largemouth Bass (Micropterus salmoides Lacépède, 1802) from Several Mediterranean Reservoirs

Author(s):  
André Jorge ◽  
M. Graça Machado ◽  
Carlos M. Alexandre ◽  
Marco Gomes da Silva ◽  
Pedro R. Almeida ◽  
...  
Author(s):  
Brock M. Huntsman ◽  
Frederick Feyrer ◽  
Matthew J. Young ◽  
James A. Hobbs ◽  
Shawn Acuña ◽  
...  

Largemouth bass (Micropterus salmoides, LMB) recruitment is limited by a critical developmental period during early life-stages, but this mechanism may be less significant within non-native habitats. We conducted boat electrofishing surveys in four tidal lakes of California’s Sacramento-San Joaquin Delta (SSJD) from 2010-2011 to describe introduced LMB recruitment dynamics. We evaluated growth, proximate composition, and health indices of young-of-the-year (YOY) LMB among tidal lakes and developed an integrated count model to determine how factors known to affect LMB recruitment shape SSJD population structure. Our results show a mismatch between growth, nutrition, and YOY abundance, where the tidal lake with the most abundant and fastest growing LMB had the poorest nutritional status. The warm winter water temperatures and lack of a hatching-cohort growth advantage suggests overwinter starvation plays a less significant role in SSJD LMB recruitment than many native LMB habitats. Collectively, our results suggest that habitat characteristics (submerged aquatic vegetation) and not overwinter mortality shapes SSJD LMB population structure, a mechanism consistent with contemporary hypotheses about the altered fish community structure of the SSJD.


2013 ◽  
Vol 18 (3) ◽  
pp. 654-659 ◽  
Author(s):  
Dongmei MA ◽  
Guocheng DEND ◽  
Junjie BAI ◽  
Shengjie LI ◽  
Xiaoyan JIANG ◽  
...  

2008 ◽  
Vol 5 (3) ◽  
pp. 200 ◽  
Author(s):  
S. A. Ryba ◽  
J. L. Lake ◽  
J. R. Serbst ◽  
A. D. Libby ◽  
S. Ayvazian

Environmental context. In the development of fish consumption advisories, fisheries biologists routinely sacrifice fish and analyse muscle fillets in order to determine the extent of mercury contamination. Such lethal techniques may not be suitable for endangered species or limited fish populations from smaller-sized water bodies. We compared the measured total mercury concentrations in tail fin clips to that of muscle fillets and illustrated that tail fin clips may be used as an accurate tool for predicting mercury in muscle tissue. This is the first study on the use of tail fin clips to predict mercury levels in the muscle tissue of largemouth bass with minimal impact on the fish. Abstract. The statistical relationship between total mercury (Hg) concentration in clips from the caudal fin and muscle tissue of largemouth bass (Micropterus salmoides) from 26 freshwater sites in Rhode Island, USA was developed and evaluated to determine the utility of fin clip analysis as a non-lethal and convenient method for predicting mercury concentrations in tissues. The relationship of total Hg concentrations in fin clips and muscle tissue showed an r2 of 0.85 and may be compared with an r2 of 0.89 for Hg concentrations between scales and muscle tissue that was determined in a previous study on largemouth bass. The Hg concentration in fin clip samples (mean = 0.261 μg g–1 (dry)) was more than a factor of twenty greater than in the scale samples (mean = 0.012 μg g–1 (dry)). Therefore, fin clips may be a more responsive non-lethal predictor of muscle-Hg concentrations than scale in fish species which may have reduced Hg concentrations.


Sign in / Sign up

Export Citation Format

Share Document